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ABSTRACT

At scale lengths less than 100 km or so, statistical descriptions of seafloor morphology
can be usefully employed to characterize processes which form and reshape abyssal hills,
including ridge crest volcanism, off-axis tectonics and volcanism, mass wasting,
sedimentation, and post-depositional transport. The objectives of this thesis are threefold:
(1) to identify stochastic parameterizations of small-scale topography that are geologically
useful, (2) to implement procedures for estimating these parameters from multibean and
side-scan sonar surveys that take into account the finite precision, resolution, and sampling
of real data sets, and (3) to apply these techniques to the study of marine geological
problems.

The seafloor is initially modeled as a stationary, zero-mean, Gaussian random field
completely specified by its two-point covariance function. An anisotropic two-point
covariance function is introduced that has five free parameters describing the amplitude,
orientation, characteristic width and length, and Hausdorff (fractal) dixmension of seafloor
topography. The general forward problem is then formulated relating this model to the
statistics of an ideal multibeam echo sounder, in particular the along-track autocovariance
functions of individual beams and the cross-covariance functions between beams of
arbitrary separation. Using these second moments as data functionals, we then pose the
inverse problem of estimating the seafloor parameters from realistic, noisy data sets with
finite sampling and beamwidth, and we solve this inverse problem by an iterative,
linearized, least squares method.

Resolution of this algorithm is tested against ship variables such as length of data, the
orientation of ship track with respect to topographic grain, and the beamwidth. This
analysis is conducted by inverting sets of synthetic data with known statistics. The mean
and standard deviation of the inverted parameters can be directly compared with the input
parameters and the standard errors output from the inversion. The experiments conducted
in this study show that the rms seafloor height can be estimated to within -15% and
anisotropic orientation to within -50 (for a strong lineation) using very short track lengths
(down to 3 characteristic lengths, or -10 to 100 kin), and characteristic lengths of seafloor
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topography can be estimated to within -25% using fairly short track lengths (down to 5 or
6 characteristic lengths, or 10's of km to -200 kin). The number of characteristic lengths
sampled by a ship track, and hence the accuracy of the estimation, is maximized when the
ship track runs perpendicular to abyssal hill lineation.

Using the assumed beamwidth, the measured noise values, and the seafloor parameters
recovered from the inversion, Sea Beam "synthetics" are generated whose statistical
character can be directly compared with raw Sea Beam data. However, these comparisons
are spatially limited in the athwartship direction. A recent SeaMARC II survey along the
flanks and crest of the East Pacific Rise between 130 and 15' N included sufficient off-axis
topography to permit a comparison of a complete 2-D synthetic topographic field with a
region of abyssal-hill terrain that has close to 100% data coverage. Synthetic data is
compared to both Sea Beam swaths and SeaMARC II survey data. These comparisons
generally indicate that we are successful in characterizing the second order properties of the
seafloor. They also indicate the directions we will need to take to improve our modeling,
including generalization of the second-order model and characterization of higher moments.

The inversion procedure is applied to a data set of 64 near-ridge Sea Beam swaths to
characterize near ridge abyssal hill morphology and its relationship to ridge properties.
Much of the data (27 swaths) comes from cruises to the Pacific-Cocos spreading section of
the East Pacific Rise between 90 and 150 N. These data provide very good abyssal hill
coverage of this well-mapped and studied ridge section and form the basis of a regional
analysis of the correlation between ridge morphology and stochastic abyssal hill
parameters. This regional analysis suggests a strong relationship between magma supply
and the character of abyssal hills. We also have data from near the Rivera (9) and Nazca
(7) spreading sections of the East Pacific Rise, the Mid-Atlantic Ridge (18), and the Indian-
African Ridge (3). Though spotty, this constitutes a good initial data set for the analysis of
correlations among covariance parameters and between parameters and ridge
characteristics, especially spreading rate. A working hypothesis is introduced to explain
the observations within a geological framework. This hypothesis contends 1) that the
maximum size of abyssal hills is related to the lithosphere's ability to elastically support the
load, 2) that fissuring and horst and graben formation dominate abyssal hill formation at
fast spreading ridges, and 3) that volcanic edifice formation, modified by faulting driven by
lithospheric necking, dominates abyssal hill formation at slow spreading ridges.

To quantify abyssal hill characteristics such as vertical and lateral asymmetry and"peakiness" we must appeal to higher statistical moments than order two. A mathematical
framework is introduced for the study of higher moments of a topographic field. This
framework is built upon the concept that lower-order moment provide the groundwork for
studying the higher-order moments. A simple 1 -D parameterized model is proposed for
moments up to order 4. This model includes two parameters for the third moment,
describing vertical and lateral asymmetries, and one for the fourth moment, which
describes the peakiness of topography. Initial methods are developed for estimating these
parameters from bathymetric profiles. Results from the near ridge data set are presented
and interpreted with regard to abyssal hill forming processes.

Thesis Supervisor: Thomas H. Jordan, Professor of Geophysics
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"In contrast to chess, the axioms of geometry and of mechanics have an
intuitive background. In fact, geometrical intuition is so strong that it is prone
to run ahead of logical reasoning. ... It is certain that intuition can be trained
and developed. The bewildered novice in chess moves cautiously, recalling
individual rules, whereas the experienced player absorbs a complicated situation
at a glance and is unable to account rationally for his intuition. In like manner
mathematical intuition grows with experience, and it is possible to develop a
natural feeling for concepts such as four-dimensional space."

William Feller (1906-1970)
An Introduction to Probability Theory and Its Applications, vol. 1, 1968

"And I tell you, if you have the desire for knowledge and the power to give it
physical expression, go out and explore. If you are a brave man you will do
nothing: if you are fearful you may do much, for none but cowards have need
to prove their bravery. Some will tell you that you are mad, and nearly all will
say, '"A at :s the use?' For we are a nation of shopkeepers, and no shopkeeper
will loor. at research which does not promise him a financial return within a
year. And so you will sledge nearly alone, but those with whom you sledge
will not be shopkeepers: that is worth a good deal. If you march your Winters
Journeys you will have your reward, so long as all you want is a penguin's
egg."

Capt. Robert Falcon Scott (1868-1912)
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CHAPTER 1

INTRODUCTION

"A first order model of spreading centers as idealized linear boundaries of
crustal and lithospheric generation provides only a gross understanding of the
global plate kinematics. As we attempt to understand the complexity of crustal
and lithospheric structure of two thirds of the earth's surface, it is becoming
increasingly necessary to study the tectonic, volcanic, and hydrothermal
processes within the spreading center plate boundary zone. All oceanic crust
bears the imprint of these processes."

Ken Macdonald [19821

... phenomena are not in and of themselves inherently stochastic or
deterministic. Rather, to model phenomena as stochastic or deterministic is the
choice of the observer."

Howard Taylor and Samuel Karlin
An Introduction to Stochastic Modeling [ 19841

The geological history of the ocean basins is recorded in the shape and form of the deep

seafloor. Features of interest to the marine morphologist are characterized by horizontal

dimensions spanning 7 orders of magnitude, from the size of typical lava pillows (-10-3

kin) to the width of the ocean basins themselves (-104 kin). For scale lengths in the upper

part of this size spectrum, say, above 100 km or so, the most common and useful

representation of seafloor morphology is a deterministic one, the standard bathymetric map.

Much of our knowledge about plate tectonic processes has been derived from the

morphological relationships made evident by bathymetric maps. The development of the

plate tectonic model has advanced our understanding of major physiographic features such

as ridges, transform faults, trenches, and linear island chains to the point that many of the

interesting questions of marine geology now concern the processes which have shaped the
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details of the seafloor on a horizontal scale of a few tens of kilometers or less, including

ridge-crest processes, off-ridge tectonics and vulcanism, sedimentation, and post-

depositional transport. In principle, maps of sufficient scale can be used to represent

features of arbitrarily small size. In practice, the number and variability of small-scale

features are so large that recovering significant information from high-resolution

bathymetric surveys requires that the morphological characteristics be averaged over

families or ensembles, which leads to a stochastic, or statistical, representation. Figure 1.1

illustrates the range of scales over which stochastic and deterministic descriptions of

morphological features of the seafloor are useful.

Stochastic descriptions underlie many qualitative statements about seafloor morphology:

"abyssal hills tend to be parallel to ridges," "slower spreading ridges produce more

severely faulted topography than faster spreading ridges," and "sedimentation smooths

rough topography," to state a few. Moreover, the parameterization of topography in terms

of its statistical properties is the most useful representation for describing acoustic

scattering from a rough seafloor [e.g., Clay and Medwin, 1977; Stanton, 1985], as well as

bottom interactions with abyssal currents [Carrier, 1970; Elter and Molyneux, 1972; Bell,

1975a]. The basis for any stochastic treatment is to consider the small-scale bathymetry to

be a sample of a two-dimensional random process described by a set of observable

statistics. We can distinguish between two types of statistical models, processes involving

the distribution of discrete landforms (e.g., volcanoes or fault scarps) and processes

represented as random fields defined over a continuous set of geographic coordinates. The

former provide the mathematical basis for the investigation of seamount populations

[Jordan et al., 1983; Smith and Jordan, 19871, whereas the latter are more useful in

describing the undulations and roughness expressed, for example, in power spectra of

seafloor topography [Bell, 1975b].

The primary subjects of random field models are abyssal hills, intermediate to small-

scale bathymetric features (5-50 km long, 1-20 km wide) that generally flank and are
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adjacent to mid-ocean ridge axes, and dominate the fabric of deep ocean basins. They are

thought to form by a combination of tectonic and constructional volcanic processes related

in a complex way to the spreading rate, magmatic budget and tectonic forces along a mid-

ocean ridge segment. Through time they are modified by mass wasting, sedimentation,

and off-axis volcanism. The abyssal hill fabric, described quantitatively by stochastic

parameterization, represents a potential source of information regarding spatial and

temporal variation of these processes.

Although power spectra [Neidell, 1966; Bell, 1975b, 1978; Fox and Hayes, 19851 and

spatial covariance functions [Krause and Menard, 1965; McDonald and Katz, 1969;

Yesyunin, 1975] have been computed from bathymetric data, systematic methodologies

have not yet been developed for recovering random field parameters from nonidealized

surveys. Consequently, with a few notable exceptions [e.g., Bell, 1978, Figure 31, little

work has been done to quantify the dependence of physiographic characteristics such as

abyssal hill lineation and roughness on the controlling geological variables such as

spreading rate and sediment thickness. The objectives of this thesis are threefold: (1) to

identify stochastic parameterizations of small-scale topography that are geologically useful,

(2) to implement procedures for estimating these parameters from multibeam and side-scan

sonar surveys that take into account the finite precision, resolution, and sampling of real

data sets, and (3) to apply these techniques to the study of marine geological problems.

Organization

The bulk of the work in this thesis is concerned with estimating second-order statistical

parameters from multi-beam bathymetric data. We regard the second-order analysis as the

building block upon which higher-order analysis is based. In one sense we have organized

this work as a perturbation problem. To lowest order we assume that the stochastic

component of seafloor depth has a Gaussian probability distribution, completely described
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by its first and second moments (the mean and covariance function). After the second-

order analysis, higher moments are then considered as perturbations to the Gaussian form.

Chapter 2 and Appendix A constitute the theoretical foundation of the second-order

characterization of the seafloor and the procedure for estimating statistical parameters from

bathymetric data. In it we introduce a five-parameter, second-order stochastic which

provides quantitative physical information regarding abyssal hills, including the rms height,

characteristic width and length, azimuth of lineation, and Hausdorff (fractal) dimension.

The forward and inverse problems of estimating model parameters from realistic, noisy

multibeam data are then developed. Five Sea Beam swaths are chosen to illustrate the

procedure. Synthetic data sets are generated from the inverted parameter for comparison

with actual data, providing a means of subjectively evaluating the model through data-

synthetic comparisons.

Chapter 3 explores in detail the resolving powers of the inversion procedure. The

primary goal of this work is to assess the performance of the inversion and to determine the

scale at which changes in stochastic behavior can be detected. The resolving power is

evaluated as a function of the swath length, orientation of ship track with respect to

topographic grain, and the response width of the sounding system. The analysis is

conducted by inverting sets of synthetic data with known statistics. The mean and standard

deviation of the inverted parameters are directly compared with the input parameters and the

standard errors output from the inversion.

Chapter 4 is a case study of abyssal hill morphology near the East Pacific Rise 130 - 15'

N. The primary motivation for this study was provided by a recent Sea MARC II survey

of this region which included sufficient off-axis topography to permit a comparison of a

complete 2-D synthetic topographic field with a region of abyssal-hill terrain that has close

to 100% data coverage. The parameters used to generate the synthetic fields were estimated

from Sea Beam swaths which pass through the region. These comparisons provide a

detailed accounting of the extent to which the model and inversion procedure succeed in
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characterizing the seafloor, and the directions that will be needed to improve the modeling.

The extensive Sea MARC II coverage of nearby ridge morphology also provides an

opportunity to correlate regional variations in abyssal hill characteristics with variations in

ridge characteristics. This analysis suggests that such variations may be tied to the relative

abundance of magma supply feeding the ridge.

Chapter 5 presents the results of a global and regional analysis of near-ridge abyssal hill

morphology. It represents the culmination of the second-order analysis in this thesis. The

global data set consists of 64 Sea Beam swaths near the Rivera, Cocos, and Nazca

spreading sections of the East Pacific Rise, the Mid-Atlantic Ridge, and the SW Indian

Ridge. These provide a good initial data set for the analysis of general correlations among

covariance parameters and between parameters and ridge characteristics, especially

spreading rate. We interpret these results in light of previous work concerning the

formation of abyssal hills in different regions. The regional data set (a sub set of the global

data set) consists of 27 swaths along the Cocos spreading section of the East Pacific Rise,

concentrated between the Siquieros and Orozco fracture zones. These data provide very

good abyssal hill coverage of this well-mapped and studied region and form the basis of a

regional analysis of the correlation between ridge morphology and stochastic abyssal hill

parameters. This study strengthens the correlation between these parameters and magma

supply made in the previous chapter.

Chapter 6 is a general analysis of higher order statistical moments. Higher moments

provide a means of quantifying important abyssal hill characteristics, such as vertical and

lateral asymmetry, and "peakiness", which cannot be characterized by second-order

moments. We begin by introducing a mathematical framework for the study of higher

order moments of a topographic field. Following this general discussion we propose a

very simple I-D 3-parameter model for moments up to order 4. The two third-order

parameters describe the vertical and lateral asymmetry of the profile, and the fourth-order

parameter describes the peakiness. We then describe initial methods for estimating these
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parameters from bathymetric profiles. And finally, we present a general comparison of

results at different spreading rates.

Previous publications

Most of the work presented in this thesis has been published or submitted for

publication. Most of Chapter 2 and Appendix A are contained in Goff and Jordan [1988,

1989a). Chapter 3 is contained within Goff and Jordan [1989b]. Chapter 4 and Appendix

C were submitted as Goff et al. [1990a], and Appendix B was printed as Goff and Jordan

[1990b].
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Figure 1.1. Range of horizontal spatial scales usefully described by deterministic and
stochastic representations of seafloor morphology.
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CHAPTER 2

INVERSION OF SEA BEAM DATA FOR SECOND ORDER STATISTICS

INTRODUCTION

"In applications, the abstract mathematical models serve as tools, and different
models can describe the same empirical situation. The manner in which
mathematical theories are applied does not depend on preconceived ideas; it is a
purposeful technique depending on, and changing with experience."

William Feller (1906-1970)
An Introduction to Probability Theory and Its Applications, vol. 1, 1968

In this chapter we propose a method for modeling the second-order statistics of seafloor

morphology - a tool, in Feller's words, for quantitatively describing our empirical

observations. This methodology is a first step, and as we gain experience in stochastically

modeling the seafloor we expect to modify the model and its applications. This work is, to

a large extent, exploratory, as we seek to understand the abilities and limitations of a new

tool of our own fashioning.

The methodology presented here is tailored to the use of data collected by multibeam

bathymetric devices such as Sea Beam. A recurring theme within this thesis is that if we

are to understand seafloor morphology, statistical or otherwise, we must understand the

way in which our bathymetric measuring device responds to or processes the seafloor,

bathymetric data does not equal seafloor. The discussion is general enough, however, that

other bathymetric devices can be used as long as their response to the seafloor is

understood.

This chapter begins by introducing a homogeneous Gaussian model specified by an

anisotropic two-point moment (covariance) function. The model has five parameters
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describing the topographic amplitude, orientation and characteristic scale lengths of

topographic elongations (abyssal hills), and Hausdorff (fractal) dimension of seafloor

roughness. We next formulate the forward problem of calculating the cross-covariance

functions between the data recorded on two channels of a swath-mapping device from the

covariance function of the seafloor, the system response, and the system noise

characteristics. We then pose and solve the inverse problem of estimating the parameters of

the seafloor covariance function given cross-correlation estimates derived from the

multibeam data.

As an initial test of this methodology, we apply this procedure to five examples of Sea

Beam transit data from the Pacific and Atlantic oceans. To assess how well the

parameterization characterizes the statistical properties of the seafloor and the Sea Beam

system, we generate synthetic Sea Beam data by a Fourier method from the Gaussian

models and description of system noise and response, and compare the results with actual

profiles.

SEAFLOOR TOPOGRAPHY AS A RANDOM FIELD

We begin by introducing the bathymetry function b(x), defined to be the depth of the

seafloor as a function of the coordinate vector x, which ranges over a two-dimensional

domain M. Represented on the map (b(x) : x e M) will be the large-scale bathymetric

signals associated with plate subsidence, major volcanoes, aseismic ridges, oceanic

plateaus, abyssal plains, the larger fracture zones, etc., as well as small-scale features such

as abyssal hills, small volcanic cones, lava flows, and sediment ponds. The former are

few enough to be dealt with from a deterministic point of view, i.e., plate subsidence can

be modeled by conductive cooling, and specific features can be individually described (and

named), whereas the latter are numerous enough to be represented by their average, or
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ensemble, properties. The bathymetry function is thus partitioned into a deterministic part

bo(x) and a stochastic part h(x):

b(x) = bo(x) + h(x) (2.2)

The small-scale seafloor topography is considered here to be a random field, generalizing

h(x) from a particular function to a two-dimensional stochastic process specified by a joint

probability density function p(h(xl),h(x2).... : xl,x 2 .... e M).

The Problem of Statistical Heterogeneity

Stochastic modeling is a standard tool for describing deterministic complexity in the

physical sciences, and it has a long history in geomorphology. In his discussion of

coastlines, Mandelbrot [1983, p. 201] argues eloquently for a statistical approach:

The goal of achieving a full description is hopeless, and should not even be entertained. In
physics, for example the theory of Brownian motion, the key out of this difficulty lies in
statistics. In geomorphology, statistics is even harder to avoid. Indeed, while the laws of
mechanics affect molecular motion directly, they affect geomorphological patterns through
many ill-explored intermediaries. Hence, even more than the physicist, the geomorphologist
is compelled to forsake a precise description of reality and to use statistics.

Nevertheless, the notion of invoking a probabilistic model to describe a single well-

defined, deterministic function, the actual topography of the seafloor, raises a certain level

of metaphysical anxiety among some marine geologists. Some of the philosophical

concern stems from an unfamiliarity with statistical methods, but at least part of it is rooted

in the recognition of a fundamental difficulty that is often glossed over in statistical

treatments of bathymetric data: For stochastic modeling to be practicable, the statistics of

h(x) must be approximated as being spatially homogeneous or stationary. This assumption

is dubious to anyone familiar with the bathymetry of the deep-ocean basins, yet it is

essential to workable algorithms for parameter estimation, including the one presented here.
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Of course, a statistically homogeneous seafloor would be very dull indeed; spatial

heterogeneity and the processes controlling it are precisely what we seek to study and

understand. To employ idealized stochastic models in this context requires careful

mathematical formulation and judicious data analysis.

The properties of h(x) most easily recovered from observations are those specified by its

low-order statistical moments. The expected value of the bathymetry is taken to be the

reference surface bo(x), so that the topography h(x) is defined to be a zero-mean process:

(h(x)) = Jh(x)p(h(x))dh = 0 (2.2)

Its higher-order properties are contained in the N-point moment functions

CN(X .... XN) = (h(xl) ... h(XN))

= J... h1 ... hN p(h, ... hN) dhl... dhN (2.3)

where h. = h(x,). When all of the coordinate indices are equal, the first through fourth

moments are associated with the familiar names of mean, variance, skewness, and

kurtosis, respectively.

The assumption of spatial homogeneity is equivalent to the statement that the N-point

moments of seafloor topography are invariant with respect to spatial translation; that is,

CN( +xl .... E+xN) = CN(xl .... xN) (2.4)
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Because of this translational symmetry we can invoke an ergodic hypothesis to identify

spatial averages with ensemble averages [Beran, 19681. In particular, for any fixed set

x,, } we can construct an unbiased estimator of the form

CN(X,-1XN) f h( +x1 )... h(4+x N ) dA(,) (2.5)
M

where the domain of integration M has an area A and is chosen so that +x,, e M for all n.

The approach adopted in this chapter is to use (2.5) to retrieve the parameters of a

spatially homogeneous statistical model. On the one hand, it is clearly advantageous for M

to be as large as possible; as the area A gets larger, the uncertainties associated with the

parameter estimates decrease, and the estimator in this equation converges to the true value

of CN(X 1, ... , XN). On the other hand, the domain M over which the empirical moments

are computed must be consistent with the assumption of statistical homogeneity. Although

this region can be chosen to exclude major topographic features such as fracture zones and

large volcanoes, and it is possible to incorporate other nonstationary aspects of seafloor

topography into the reference surface bo(x), the averaging area A is ultimately limited by

the scale of statistical heterogeneity.

Hence, from a practical point of view, the type of stochastic modeling described here

will be useful if we can identify a set of topographic domains {Mk) which satisfy two

competing criteria:

1. To some order N,,.,a the estimators (CN) computed from any set of subdomains in

Mk (k fixed) are consistent with the same stochastic parameterization.

2. The sizes of the averaging areas Ak are sufficiently large that the stochastic

parameters are determined with small enough uncertainties to be morphologically

interesting.
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In Chapter 3 we discuss the trade-off between spatial resolution of non-stationarity and

resolution of the change in stochastic parameters from one averaging area to the next.

Second-Order Statistics

The stringency of these criteria increases rapidly with the maximum order of the

statistical moments used in the parameter estimation, Na,.. For most of this thesis we shall

be content to explore the case where N,,.a = 2, the estimation problem for second-order

statistics. Since the process h(x) is defined to have zero mean, we are only concerned with

its two-point moment, or covariance function. Translation symmetry allows us to write

Chh(X) a C2 (4, + x) = (h(4) h(4 + x)) (2.6)

Hence, for a stationary process, the covariance function depends only on the the spatial lag

vector x, and its two-dimensional Fourier transform is the power spectrum [Bracewell,

1978]:

Ph(k) = f Ch(x) e- k-x d 2 (2.7)

Both the covariance and the power spectrum are re&-valued functions symmetric about the

origin; e.g., C&h(-x) = CM(x).

A Gaussian process is one completely specified by its first and second moments. If h(x)

is stationary and Gaussian with total topographic variance H2 = Chh(O), then the joint

probability density function for h, = h(x l ) and h2 = h(x 2) has the familiar form
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h2 _ p)hIh+h2

p(hl,h2 ) = 1 exp [- - 1 (2.8)2 t2 2H 2(1-P)

2 EH Phh h

where Phh = H- 2 Chh(xl-x2) is the correlation coefficient. In this case, the three-point

moment vanishes, and the four-point moment is given by [Beran, 1968]

C 4 (X I ,x 2 ,x 3 ,X 4 ) = Chh(Xl-X 2 )Chh(X 3 -x 4 )

+ Chh(Xl-X 3 ) Chh(X 2 -X 4 ) + Chh(Xl-X 4 ) Chh(X 2 -X 3 ) (2.9)

It is worthwhile to stress at this point that the second-order statistics contained in the

covariance function or power spectrum are insufficient to characterize many salient features

cL seafloor topography. Because the Gauss'-in density function given by (2.8) is

unaffected by a change in the sign of nj-h 2 or x1-x 2, it cannot represent asymmetry about

either a vertical or horizontal axis. To des,;.rbe the s!,hpe asymmetry commonly associated

with the tilting and rotation of fault blocks near the ridge crest [Macdonald and Luyendyk,

1977; Schouten and Denham, 1983], or vertical asymmetries due to sediment ponding

requires moments out to at least third order, for example, whereas four-point moments are

needed to represent a "boxy" or "peaky" appearance.

A Gaussian Modelfor Seafloor Topography

To formulate the forward and inverse problems for a multibeam echosounder, it is

desired to have a covariance function Chh(X) specified by a small set of well-chosen

geomorphic parameters. The second-order statistics of seafloor topography have been

investigated by a number of authors using a variety of space domain [Krause and Menard,

1965; McDonald and Katz, 1969; Yesyunin, 1975] and spectral domain [Neidell, 1966;
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Bell, 1975b, 1978; Fox and Hayes, 19851 techniques, but only a few have explored

parameterized models. Bell [1975b] considered a power spectrum with the functional form

F0
Ph( k )  2 2 2 (2.10)

k + ko

At large wave number (k >> k0), this spectrum rolls off at the rate k-2. Fox and Hayes

[1985] argued that spectral slopes other than -2 are observed on bathymetric profiles; they

fit their one-dimensional spectra to a two-parameter power law

Ph(k) = a2k - 2b  (2.11)

Although (2.11) generalizes (2.10) to an arbitrary asymptotic roll-off rate, it is clearly

inadequate at low wave number, since extrapolating a power law too far in this direction

leads to large values of topographic variance, in conflict with the overall flatness of the

ocean bottom at long wavelength. Bell's parameterization (2.10) avoids this problem by

having a comer k0 that separates a "white" spectrum at low wave number from a "brown"

spectrum at high wave number. On the bathymetric profiles examined by Bell [ 19781 the

length scale k0-' corresponding to this transition is the characteristic dimension of the

abyssal hills, whose amplitude tends to decrease with spreading rate.

Abyssal hills are topographic features created by vulcanism and block faulting at the

ridge crests, and they tend to be elongated perpendicular to the direction of spreading. Any

stochastic model des,-ribing such topography must therefore be anisotropic; i.e., the

statistics along profiles must be allowed to vary with azimuth. Both Bell [1978] and Fox

and Hayes [1985] investigated anisotropy by letting their one-dimensional spectral

parameterizations vary with the orientation of the profile, but neither suggested an adequate

two-dimensional model.
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Before proceeding to generalize their parameterizations to two dimensions, it is

instructive to examine the space domain properties of a one-dimensional random process

whose spectrum is given by (2.10). Taking the inverse Fourier transform yields the

exponential covariance function

Chh(x) "= H 2 ektc.x)=H2e -k x1(2.12)

where H2 = Fo/2ko. The discontinuity in the derivative of CM at x = 0 implies that the

variance of the random process, dh(x)/dx, is unbounded; h(x) is continuous but not

differentiable. In the terminology of Mandelbrot [1983], h(x) is a random fractal of

Hausdorff-Besicovitch dimension 3/2. (Mandelbrot [1983] equates the Hausdorff-

Besicovitch dimension with the "fractal dimension," a term which has gained wide use. In

this paper we refer to it by the more traditional "Hausdorff dimension") It is also a Markov

process; in fact, it is the only one-dimensional Markov process that has stationary,

Gaussian transition probabilities (the Ornstein-Uhlenbeck process) [Feller, 1971].

In two dimensions any dependence of the covariance function Chh(x) on azimuth gives

rise to spatial anisotropy. We shall assume that the only azimuthal variation is through the

dimensionless ellipsoidal (Riemannian) norm

r(x) = IxT Q x] = qll'2 + 2q 2xlX2 + q22x2 (2.13)

where Q is a positive-definite, symmetric matrix whose Cartesian elements qij have

dimensions of (length)-2. Q can be expressed in terms of its ordered eigenvalues k. 2  k,2

and its normalized eigenvectors e, and 6,

k2 j T + k 2 j 6T (2.14)
n S, sS
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Since the eigenvectors are orthogonal ( eT is = 0), they depend on only one orientation

parameter, which is chosen to be the azimuth 4s of es, measured clockwise from north.

This direction corresponds to the smaller characteristic wavenumber ks.The characteristic

values define an aspect ratio

a = k/k s  (2.15)

which is unity in the case of an isotropic random field. In regions where h(x) is dominated

by abyssal hills, the angle C. will generally be their average local strike, and a will be their

average length-to-width ratio.

The most straightforward generalization of (2.12) to a two-dimensional field is

Ch h(X) =- H 2 . -r(x) (2.16)

The power spectrum obtained from this covariance function is

Ph(k) = 2n H 2 1Q Fil2 [u2 (k) + 1 (2.17)

where u is the dimensionless norm of k defined in terms of its modulus k and azimuth " by

1/2

us(it) = [kTQIl k]' V 1(kA)2 C (S2 + (k/k.) 2 sin 2 (4- (2.18)

The covariance function for a profile with arbitrary orientation i, across a homogeneous,

two-dimensional Gaussian field conforming to (2.16) is clearly an exponential of the form
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(2.12) with k0
2 = jrT Q i,, and (2.17) is related to Bell's one-dimensional spectrum (2.10)

by the integral [Longuet-Higgins, 1957]:

Ph(k' = JPh(k)dl 1 (1k2 k,2 (2.19)

In the isotropic case where kn = k= ko, (2.19) reduces to an Abel transform [Bracewell,

19781. Hence, an asymptotic roll-off rate of k'- 2 in one dimension corresponds to a roll-

off rate of k -3 in two. (In an appendix to his paper, Bell [1975b] discussed the

extrapolation of (2.10) to a two-dimensional isotropic field, but his results contain a

normalization error leading to an incorrect roll-off rate.)

Fox and Hayes's [ 1985] observation that seafloor spectra decay at different asymptotic

rates provides motivation to generalize the covariance model (2.16) in the following way.

We define the set of functions

G (r) = rVK (r) 0<r <cc V r [0,1] (2.20)

where KV is the modified Bessel function of order v, and we let

Ch(x) = H 2 G(r(x))/G (0) (2.21)

The mathematical properties of this covariance function and the two-dimensional Gaussian

process it describes are discussed in Appendix A. The power spectrum of the process is

Ph(k) = 4nvH 2 iQ1l-1/ 2[u 2 (k) + l1--V + 1) (2.22)

hqk) k)+I
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The generalized model is thus one having a spectrum with an asymptotic roll-off rate

equal to -Z(v + 1), and in the special case v = 1/2 its covariance reduces to the exponential

form (2.16). Figure 2.1 shows the covariance functions and power spectra for several

values of v. It is demonstrated in Appendix A that the Hausdorff dimension of such a

stochastic process is

D = 3-v (2.23)

Hence, decreasing the parameter v increases the roughness, with the limiting cases of unity

and zero corresponding to a random field with continuous derivative (Euclidean surface, D

= 2) and one which is "space-filling" (Peano surface, 0 = 3), respectively. All realizations

of this covariance model are bounded self-affine fractal surfaces (see Appendix A), with the

special case D = 2 corresponding to a bounded self-similar surface. Profiles across sample

surfaces of various Hausdoff dimensions are illustrated in Figure 2.2.

It is also shown in Appendix A that a characteristic length A0 along a profile in the i0

direction can be defined in terms of the second moment, or width of the covariance function

in the same direction, which yields

T 10a
S= 242(v + 1/2), k° e Qo(2.24)

ko

where k9 is the scale parameter in the 6o direction. An may be interpreted as being the

characteristic abyssal hill width, and As as the characteristic abyssal hill length.

INVERSION OF SEA BEAM DATA FOR SECOND-ORDER MODELS
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The Gaussian model of seafloor topography formulated in the last section is specified by

five parameters, the root-mean-square (rms) amplitude H, the lineation direction Cs, two

characteristic scale parameters k, and ks, and the Hausdorff dimension D. We pose the

following inverse problem: What values of these statistical parameters best describe an area

of seafloor sampled by a swath of multibeam echo sounding data?

The particular echo sounding device that we shall consider is the Sea Beam system now

installed on a number of research vessels [Renard and Allenou, 1979; Farr, 1980]. In the

standard mode of Sea Beam operation, 12-kHz signals are generated by a transducer array

mounted along the ship's keel, received by a hull-mounted array of hydrophones, and

stacked into 16 athwartship beams, each with a half-power width of approximately 2.70.

At a ship speed of 18.5 km/h (10 knots) in deep water (-4 km), soundings are typically

made once every 10 s, so that the along-track sampling interval (-50 m) is about 4 times

smaller than the beam resolution and cross-track spacing (-190 m).

The inversion technique developed in this paper takes advantage of the dense along-track

sampling to separate the seafloor signal from Sea Beam system noise. We illustrate the

technique by applying it to five short profiles of Sea Beam transit data, four in the North

Pacific and one in the North Atlantic (Figure 2.3). The profiles range from 145 to 210 km

in length, and the average water depths from 3500 to 5600 m (Table 2.1).

Sea Beam System Response and Noise Characteristics

Most of the published work on the Sea Beam system response has concerned the

recognition of artifacts that might distort bathymetric maps or be misinterpreted in terms of

bathymetric features [e.g., de Moustier and Kleinrock, 1986]. To do statistical modeling,

we need a more quantitative understanding of how Sea Beam data are affected by sampling

density, finite beamwidth, and errors in echo detection and processing. The problem is

intrinsically nonlinear in the sense that the response operator and noise levels of any echo

sounding system depend on the amplitude and character of the bottom topography
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reflecting the acoustic signals. It is beyond the scope of this thesis to undertake a detailed

treatment of the Sea Beam system response, which would require information from

carefully designed experiments conducted at sea. Instead, we resort to a simplified, linear

analysis.

Figure 2.4 shows a 22-km segment of swath 1 taken on the Papatua 11 cruise of the R/V

Thomas Washington about 300 km south of the Aleutian Trench. In the upper panel, the

"raw" (single-ping) soundings are plotted as 16 individual traces with a vertical

exaggeration of about 8:1; time increases along the ship's track from left to right, and the

beam numbers increase from port to starboard, with zero corresponding to the center beam.

The long-wavelength variations lineated at an angle of about 350 to the profile are the

abyssal hills (in this region the lineations run nearly east-west with north-south

wavelengths of -10 kin), whereas the spiky ping-to-ping variations represent system noise.

A standard display procedure is to smooth the data by a five-point running mean, decimate

to an along-track interval approximately equal to the beam spacing (middle panel), and then

contour these values to obtain a swath map (lower panel). The along-track averaging

removes signals and noise with wavelengths less than the beam spacing and allows the

interpolation across some of the smaller data gaps common on the outer beams.

Our approach is to avoid the smoothing, interpolation, and regridding of the bathymetric

data employed by the contouring algorithms (as well as by most image-processing and

spectral analysis procedures); instead, we deal directly with the raw soundings displayed in

Figure 2.4a. From a signal-processing point of view, these are the discretized output of a

noisy, band-limited, 16-channel "black box" whose input is h(x). In this paper we assume

that the response of the system is linear and the noise is additive. We represent the

apparent topography on track p at time t by an equation of the form

S(t) = JBP(x,t) h(x)dA(x) + n P(t) (2.25)
A P
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Bp(xt) is the effective response of the pth beam subtending an area AP(0, and np(t) is the

system noise.

We assume that the noise samples a stationary Gaussian process with zero mean, and

that the beam pattern is independent of time; i.e., Bp(xr) = Bp(x - P(O), where 4P(t) is

the center position of the beam. If the ship maintains a constant velocity v, sp(t) will then

be a zero-mean, stationary Gaussian process, and the statistical properties of the multi-

channel response {sp(t)) will be completely described by the auto- and cross-covariance

functions

Cpq(t) (S () Sq(r + t)) (2.26)

The inverse problem thus reduces to determining the parameters of Cm(x) from estimates

of Cpq(t). (For notational simplicity, we will restrict our attention to the special case of

constant ship velocity; generalizing to an arbitrary ship track is straightforward.)

To fix ideas, let us first consider an ideal multibeam echo sounder with no noise and

infinite resolution: np(t) = 0, Bp(x,t) = 6x - 4P(t)), where 8(x) is the Dirac delta function.

We choose a coordinate system x = [xt, x2] such that the center beam along the (straight)

ship track corresponds to the locus 1(t) = [vt, 0], where v is the (constant) ship speed. In

general, the center position of the pth beam, 4P, is displaced perpendicular to the ship track

by an amount APo = -D tan~p, where D is the water depth and OP is the beam angle

relative to the vertical, measured positive to starboard (a convention that introduces the

minus sign). It is then a simple matter to show that

CPq(t) = Chh(Vt, Ap (2.27)

. .. i m imm rmnmrn~ml tmrmpqm Ih ( t
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where A pq = A P0 - A~o (cf. (2.31)). Equation (2.27) says that the cross-covariance

function between two beams is given by the intersection of the two-dimensional covariance

function Chh(Xl, x2) with a vertical plane parallel to the x, axis, a geometrical interpretation

illustrated in Figure 2.5. If p = q, the vertical plane goes through the origin, yielding the

symmetric autocovariance function Cp. The amplitude of CPP is proportional to H2, and its

properties near t = 0 determine the fractal dimension D. The decay rate of Co,, for large t

fixes q11 in (2.13) but is independent of q12 and q22. However, if p * q, the vertical plane

is displaced by A4pq in the x2 direction, yielding a cross-covariance function whose shape

depends on the entire Q matrix.

Generalizing these arguments, we see that in the idealized situation of perfect resolution

and accuracy a combination of measurements made from the autocovariance function for

one beam and the cross-covariance function between any two beams completely determines

the five-parameter model.

What complicates this picture, of course, is the smoothing and noise introduced by any

real echo sounding system, which modifies the relationship between CPq and CMh, as well

as the fact that C Pq cannot be exactly determined from any finite sample of data. Any

practicable algorithm for the inversion of estimates of CNq to obtain the parameters of CM

must take these effects into account. The net response of the Sea Beam system depends in

a complicated way on the transducer array geometry, the pulse-shaping filters, and the

algorithms for detecting signal returns and correcting for pitch, roll, and other

environmental factors. Our simplistic model considers none of these complications

explicitly, but parameterizes finite resolution of the Sea Beam system by a single number,

01t2, the half angle of a beam at its half-power point, which we assume to be independent

of the beam number p as well as the azimuth about the beam axis.

If the width of this circular beam is small, its projection onto a flat seafloor is an ellipse

centered at 4p with a (half-power) semiminor axis of length 1 t2D/cosp in the fore-aft

direction and a semimajor axis of length 64 12D/cos 20P athwartships. The response
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functions plotted by de Moustier and Kleinrock [ 1986, Figure 2] indicate that the main lobe

of the beam pattern is well represented by a cosine-squared function with 601 = 1.330

0.023 rad. We therefore approximate the response kernel by a Hanning taper of the form

p(XI = p COS (N/2 Vp (XlX 2 )) vP < 1
(2.28)

B (x 1,x 2 ) = 0 V, > I

where

( 2 fcos p 2  2 2
Sx2 ) 2 COSO (2.29)

WJa-arccos (1/21/4) = 0.5718.... and (P is a normalization constant chosen to make the

kernel unimodular.

The signals put out by the beam-forming operations have a complex, highly variable

structure consisting of the many individual arrivals (see de Moustier and Kleinrock [ 1986]

for examples). Because of these variations the arrival times picked by the Sea Beam

system exhibit fluctuations with rms amplitudes of 10-30 ms that are the chief source of

the noise evident in the unsmoothed data of Figure 2.4a. The high-frequency character of

this noise indicates that its autocorrelation falls off rapidly with lag time, consistent with it

being generated by scattering from fine-scale features of the rough topography. Therefore,

the cross correlation between the noise on different beams is expected to be small, and the

covariance functions for the noise can be approximated by

(n (r) n -+t)) = N: p2() (2.30)
p q( P P I pq
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where Np is an rms amplitude, which may vary from beam to beam, and p,,. is a correlation

function that decays rapidly from a value of unity at zero lag. Analysis of Sea Beam

swaths supports these assumptions (see below).

To complete our model, we assume the cross correlation between the two terms on the

right-hand side of (2.25) is small. Then, squaring this equation and averaging over the

ensemble yields

Cq(t) = R(XV ,2A Ch,(Xt,x 2 ) dxl d 2 + N P() q (231)pN pq P2pq t pq

The integral kernel in (2.31) is defined by

Rpq(XlX 2) = Bp(x l ,x2)Bq(Xj+XlX2+X2 ) dx' dx 2  (2.32)

The beam function given by (2.28) is nonzero only within a finite domain, which sets the

limits of integration in (2.31) and (2.32). Rpq is non-negative, strongly peaked at the

origin, and approaches the Dirac delta as J01/2-+ 0.

The effects of system response and noise on an autocovariance function CPP and its

spectrum are schematically illustrated in Figure 2.6. Finite beam resolution smooths out

the high-wave-number features of the bathymetry; it therefore rounds off the peak of the

autocovariance at zero lag and rolls off the power spectrum at high frequencies. The noise

adds a spike at the origin and a nearly constant level to the power spectrum, which

dominates at high frequencies. If the characteristic wavelengths of the bathymetry are large

compared to 601/2D and we avoid using estimates of C q at small lag values, then we expect

the impact of these effects on the estimation of H, Cs, k., and k, to be relatively small. It is

clear, however, that if they are ignored, any estimates of the fractal dimension D can be

severely corrupted.
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Estimates of Cross Covariances and their Uncertainties

Equation (2.31) represents the solution to the forward problem of computing the cross-

covariance functions (Cpq) for a multibeam echo sounder from the autocovariance function

Chh of statistically homogeneous seafloor. Of course, the cross-covariance functions

(Cpq) are not known; only estimates constructed from finite samples of data are available.

In setting up the inverse problem we must account for the statistical variations imposed by

the limited sampling.

It is presumed that the data are collected at a set of M equally spaced points (ti = iAt =

iAx/v: i = 1, 2, .... M). At the lag pointj we shall employ4he unbiased estimator

M.

C( = -V s' (ti ) s(t i + t) M. = M-j (2.33)
pqW M. qa ii i=1

This estimator assumes that water depth and ship speed do not vary much about their mean

values.

A typical example of an autocovariance estimate, in this case computed from beam -3 of

swath 3, is displayed with its spectrum in Figure 2.7. As will be discussed in more detail

later, the character of the seafloor topography along swath 3 is reasonably well matched by

a Gaussian model with an approximately exponential correlation function (D = 5/2). We

have therefore superposed on the figure the theoretical autocovariance function (2.31)

computed from the model (2.21) with an appropriate choice of parameters (Table 2.2). For

reference we also display the theoretical values derived from (2.27), corresponding to an

ideal echo sounder unmodified for Sea Beam system response and noise. Near zero lag,

the comparison between theory and data is very good, both the theoretical and actual

autocovariances showing the basic features sketched in Figure 2.6. The peak at zero lag is

rounded by an amount consistent with a beam width expected in water of this depth (-5400
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m), and a sharp noise spike is clearly evident. Near 0.6 cycle/km, the increased roll-off of

the spectrum due to finite-beam smoothing becomes appreciable, and above 2 cycles/km,

the spectrum flattens owing to system noise.

In this example and most others that we have observed, the noise spike comprises only

the single, zero-lag sample point of the autocovariance estimate, and it is not observed at all

on the cross-covariance estimates. These observations imply that the characteristic width of

the correlation function p,, (t) is considerably less than the 10-s (-50 m) sample spacing.

The large separation between the characteristic scales of the noise and seafloor topography

allows us to estimate the noise power Np2 by the simple procedure of measuring the

amplitude of the noise spike off the autocovariance plots. Figure 2.8 shows the results as a

function of beam number for each of the five swaths listed in Table 2.1. In most cases the

rms amplitude NP is smallest for the center beam and increases with beam angle, as

expected.

Away from zero lag, the estimated autocovariance initially decays like the model, but

after a few kilometers it begins to deviate significantly, and at large lag (> 10 kin) it begins

to oscillate about zero with a wavelength -2k 0 -'. This behavior is a manifestation of the

estimation variance due to the finite length of profile, expressions for which we will now

derive. The estimator is unbiased, since its expected value is

M. M.

(C-q(J)- = M E(s(ti)Sq(t. + )) = . Cpq(tj) = Cpq(j) (2.34)
PI i= i i=1. j P i p

The variation of (2.33) about this mean is measured by the cross covariances

-Ull) Coy pq(A, 3 (/)= (Cpq( ())- C (t.)C tt) (2.35)

l P , l , qr Iq rs~m ll i mmmali a
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The expected value on the right-hand side of (2.35) involves the fourth moment of (2.25):

M - V~Cp~C~ 1) =MMj (s(t) Sq(i +ft) s(tk) sS(tk + tl)  (2.36)

I I i=l k=1

Because sp(t) is Gaussian, the fourth moments can be related to products of second

moments:

(SpSqSSs) = (SpSq) (S.Ss) + (S P ) (SqS) + (SSS) (SqS,) (2.37)

Substituting (2.37) into (2.36) and summing over the first term yield Cpq(tj) Crs(t), which

cancels the last term in (2.35). The remaining two terms give

UlJ) M IM Y~1 [C (tk~i) Cq(tk~i+t.j) + C s(tk_i.,) Cq(tki.j) ] (2.38)

j i=1 k=1

For fixed values of the lag indices j and 1, the covariance between the estimates of Cpq and

C,s decreases as the square of the sample length M.

Because of the Fourier relationship (2.7) we could formulate the problem in the spectral

domain, say by fast Fourier transforming segments of individual beams and stacking their

products to obtain estimates of the power and cross spectra and then retransforming to get

the autocovariance and cross-covariance functions. However, there are considerable

practical advantages to computing these functions directly in the physical (space or time)

domain. I' particular, the data for the outer beams typically show a number of dropouts,

which occur when noise bursts swamp the bottom returns (e.g., Figure 2.4), and these

must be filled by some sort of interpolation algorithm before the Fast Fourier Transform

.. . . . . . === =mm m MeI II
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(FFT) can be applied. This operation requires a priori assumptions to be made regarding

the statistical character of the seafloor, and it becomes difficult to assess the estimation

uncertainties. On the other hand, the physical domain estimator (2.33) can be computed

from the raw data simply by summing over the available points. As long as Mi is redefined

to be the total number of points used for each lag, the covariance of the estimates given by

(2.38) remains valid.

Inversion of the Cross-Covariance Functions for Model Parameters

We are now in a position to estimate the second-order statistics of the seafloor

topography from a finite sample of multibeam echo sounding data. Since (2.31) specifies a

linear relationship between the autocovariance function Chh and the cross-covariance

functions I Cpq}, it can be inverted by the Hilbert space methods of Backus and Gilbert

[ 1970] and Franklin [19701. At this early stage of investigation we avoid this functional

analysis approach. Despite the considerable mathematical formalisms developed around

such treatments, the results are difficult to assess: After deconvolving the Sea Beam

response to get an estimate of the two-dimensional function C,, we are still stuck with the

task of interpreting it in terms of quantities having more geological significance, yet another

inverse problem.

Instead, we adopt a model of Chh specified by the covariance (2.21), whose five

parameters are well-defined morphological quantities. Our intent is to begin to test how

well this model can represent the fine-scale topography of the deep oceans. Although not

much Sea Beam data has yet been analyzed, even the limited sample examined here

indicates that more elaborate parameterizations will prove useful. Some comments on how

this might be accomplished are made in a later section.

The observables (Cpq) are linear in the squared amplitude H 2, but they are nonlinear

functions of the azimuth C, the two characteristic scale parameters k, and ks, and the

Hausdorff dimension D. Therefore we solve the parameter estimation problem by the
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standard methodology of iterative, linearized, least squares minimization [e.g., Bard, 1974;

Menke, 1984]. Our algorithm proceeds by the following steps:

1. (Cp(i) } are computed from (2.33) for all available points for all 16 beams up to lag

values jAr = 20 km. (Because Cpq = Cqp, only estimates forp > q are made.)

2. Starting values for H, D, and the along-track scale parameter q11 are estimated by

an eyeball fit to the autocovariance functions for the center beam. Noise spikes are

measured from the zero-lag values of the autocovariances for all beams. Starting values for

the orientation parameter C, and the cross-track scale parameter q22 are obtained from the

skewness and decay of the cross-correlation estimates.

3. The Q matrix is constructed and diagonalized to yield estimates of k,, and k . The

estimation covariance matrix Vpqrs(j,) is computed.

4. Refined values H, Cs, k,, k., and D are obtained by an iterative, weighted, least

squares fit to (CpqW(). The calculation requires the partial derivatives of Cpq(") with

respect to the model parameters, which can be obtained analytically for all parameters.

Vpqrs(j,l) is recomputed at each iteration, and its inverse is used as a weighting matrix for

the inversion.

5. Standard errors are obtained as the square roots of the diagonal elements of the

parameter covariance matrix computed from the partial derivative matrix and Vpqrs(',I). We

also calculate the off-diagonal elements, which specify the covariances between parameters.

Numerical experiments show that while the estimates of H and the parameters of the

scale matrix Q are generally quite robust with respect to this procedure, the retrieval of the

Hausdorff dimension D is often not. Specifically, estimation of D is corrupted by

deviations from the idealized cross-track covariance model (2.38). The robustness of the

algorithm can be strengthened and its convergence properties improved by sequencing step

4 in two parts.

4a. The preliminary values of H, q, 1 , and D are first refined using several dozen

closely spaced points of each several autocovariance estimates (Cpp}.
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4b. D is then fixed and the estimates of H, Cs, k, and ks are revised by the inversion of

a more widely spaced sampling of the autocovariance and cross-covariance estimates

(Cpq1.

If necessary, the sequence is repeated.

The results for swath 1 are tabulated in Table 2.2 and illustrated in Figures 2.9 and 2.10.

Figure 2.9 compares the autocovariance estimates from five beams with the model

autocovariance function from (2.31). The average amplitude and shape of the sample

curves are in good agreement with the model curve, especially near the origin where the

estimation points are concentrated. In this case, the inversion of step 4a yielded a

reasonably well constrained value of the Hausdorff dimension: D = 2.47 ± 0.08.

Figure 2.10 compares the autocovariance and cross-covariance estimates from five

beams with model curves corresponding to the values of H, 's, kn, and k. determined in

step 4b. The four average characteristics of the empirical curves that control the estimates

of these quantities are (1) the mean height, (2) the move-out of the maxima with increasing

beam separation, (3) the decay from the maxima with increasing lag, and (4) the decay of

the maxima with increasing beam separation. The first constrains the rms amplitude H, and

the remaining three jointly constrain the azimuth of elongation Cs and the scale parameters

k. and ks . In the case of swath 1, which is the shortest profile among the five used in this

study (only 146 kin), H is determined to a 1-sigma precision of ± 15% and s to ± 30,

whereas the uncertainties in the estimates of kn and ks are proportionately much larger, ±

33% and ± 62%, respectively. The variations of the estimates about the model curves

observed in Figures 2.9 and 2.10 are in good quantitative agreement with the fluctuations

due to the finite length of the profile described by (2.38), giving us some confidence in the

stochastic model.

The covariance of the errors can be readily calculated for any pair of parameter estimates

not including D. The covariance between D and H or s is fairly small and can usually be

ignored. Its coupling to the along-track scale parameter q1 t can be significant, however. A
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larger value of D causes a greater rate of decay in the covariance (see Figure 2. 1). The

along-track data constrain the characteristic length (2.24) to be within a fairly narrow range,

so that an overestimate of D will force an underestimate of the along-track wave number

q,1- 1
2, and vice versa.

Another potential source of bias in estimating the Hausdorff dimension is the trade-off

between D and the half beamwidth &1,2: The zero-lag peak of the autocovariance function

can be made smoother either by decreasing the former or increasing the latter. In lieu of a

more direct calibration of the Sea Beam system, we have adopted a linearized, time-

invariant response function conforming to the nominal parameters of de Moustier and

Kleinrock [1986]. An experimental program to collect such data would clearly enhance the

accuracy of the inversion results.

The parameters obtained by inverting the five swaths of Table 2.1 are listed with their

standard errors in Table 2.2. They represent a substantial range in stochastic character.

The rms height H and the characteristic length A,, vary by a factor of 4. Aspect ratios vary

by a factor of almost 3, and Hausdorff dimension ranges from as low as 2.1 (swath 4) to

as high as 2.6 (swath 3). Given such a range in stochastic character, the prospects for

learning about geological processes from the mapping of these morphological parameters

appear to be promising.

IMAGES OF THE SEAFLOOR SYNTHESIZED FROM THE STOCHASTIC MODEL

The zero-mean Gaussian model completely specifies the two-dimensional stochastic

process representing fine-scale seafloor topography in terms of its autocovariance function

Chh(x). Our model assumes that this function is adequately approximated by (2.21).

Numerical realizations of the process can thus be computed from the parameters listed in

Table 2.2; in other words, the data in Table 2.2 allow us to create "synthetic images" of the

seafloor to arbitrary resolution and scale. Such images render the statistical character of the



44

model to all orders, not just the two-point averages employed in the inversion. In

particular, we can feed these images through the linearized response of the multichannel

system and generate "Sea Beam synthetics" for comparison with the actual data, thereby

providing a powerful method for the subjective assessment of all modeling assumptions.

Synthetic Seafloor Topography

To generate synthetic topography, we compute a Fourier spectrum on a regularly spaced

wave number grid by multiplying the square root of the power spectrum (2.22) by a phase

factor exp (io), where 0 is a random number uniformly distributed on the interval [0, 2t)

[Priestly, 1981 ]. The space domain image is then obtained from a two-dimensional, fast

Fourier transform. (The algorithm is complicated somewhat by the care that must be taken

to avoid aliasing and other numerical sampling effects, given finite computing resources.)

Appendix B provides some examples of this algorithm and a discussion of aliasing.

Appendix B also describes a nesting algorithm, which allows us to stochastically

interpolate a section of topography. By nesting we can display a synthetic realizations to

arbitrary resolution.

Comparison of Sea Beam Synthetics with Real Data

The procedure we use to calculate Sea Bean synthetics is illustrated in Figure 2.11: (a)

synthetic topography is generated from the estimated model parameters by the Fourier

method, (b) the response function (2.28) is convolved with the topography to obtain the

beam values on a rectangular grid approximating the Sea Beam sample points, (c) Gaussian

white noise is added with an rms value appropriate to the system noise observed on each

beam, and (d) data are dropped at random to match the observed dropout rate.

Figure 2.12 compares 5 hours of data from swath 1 with 5 hours of synthetically

generated data. System noise has been suppressed by smoothing both the actual data and

the synthetic with a five-ping running average. A seamount has been edited from the
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former, causing the data gap between 0230 and 0300, whereas the synthetic does not

include any data drops. The overall comparison is quite favorable; the rms height, the

topographic orientation, and the scale length in the in direction appear to be matched within

the estimation uncertainties. The agreement in scale length in the is is difficult to gauge,

although it does appear to be slightly underestimated in the synthetics. This difficulty is not

surprising considering the large formal uncertainty (± 60%) on the estimate of A.. These

large uncertainties are predominantly a result of the generally poor sampling of the longer-

wavelength properties of the seafloor in the is direction. The agreement in Hausdorff

dimension is also difficult to gauge, but it does appear that the high-wave-number

characteristics on both synthetic and data are very similar.

Figure 2.13 is a more detailed comparison between actual and synthetic data for swath 1.

The upper panels of each set are 1-hour samples, whereas the lower panels show the

results of subtracting a five-ping running mean from each beam. This stripping operation

is a high-pass filter that brings out some features of the noise not accounted for by the

model. In particular, the noise is neither stationary nor uncorrelated between beams, as the

model assumes. High-amplitude, high-wave-number energy appears in the form of noise

spikes appearing across the swath at discrete times or as noise bursts associated with

scattering from topographic scarps. Clearly, a more sophisticated model for noise is

needed to match these observations.

Swath 2, located in the North Pacific between the Mendicino and Pioneer fracture zones,

is the most lineated in our data set (a = 6. 1), and it has the smallest characteristic length (A.

= 4 kin). Because of the very short width of the autocovariance functions computed for

individual beams the trade-off between the Sea Beam response function and the Hausdorff

dimension is exceptionally strong. Hence, we chose to fix D at a nominal value of 2.5 in

step 4b of the inversion procedure. The overall comparison between real and synthetic

data, shown in Figure 2.14, is as good as for any of the other swaths. However, the
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valleys in the real data tend to be flattened relative to the peaks, which is presumably an

effect of sediment ponding. This behavior cannot be replicated by a Gaussian model.

Swath 3 is located south and east of swath 2 across the Pioneer fracture zone (see Figure

2.3). Despite their proximity, there are resolvable differences in the statistical character of

the seafloor sampled by the two swaths, primarily in their aspect ratio, which decreases by

almost a factor of 2. Although a visual comparison confirms the existence of systematic

differences, the 5-hour sample of swath 3 in Figure 2.15 displays some apparent

nonstationarity. The regions centered near 1130 and 1300 appear to be smoother than

adjacent areas, and this character is not matched by the synthetic. We suspect that the net

effect of the nonstationarity might to bias the scale lengths to smaller values, which could

account for some of the differences in the cross-track scale estimates for swaths 2 and 3.

Swath 4 is located in the Cretaceous quite zone on crust approximately twice as old as

that imaged by swaths 2 and 3, and the sediment cover is nearly twice as thick (-200 m),

which acts to smooth the topographic profiles. Because sedimentation preferentially fills in

the high-wave-number featLres, the value of Hausdorff dimension recovered by the

inversion is the lowest of the Pacific regions sampled in this study. Although the data-

synthetic comparison in Figure 2.16 appears to be fairly good, the amplitudes are low, and

subtle differences are harder to spot. Again, one difference is the existence of "flat spots"

in the data not contained in the synthetics.

On the balance, however, we are impressed by the general success of the second-order

model in matching the statistical character of the Pacific data we have examined thus far.

The agreement suggests that the parameters in our Gaussian model are capable of

representing the first-order features of Pacific seafloor morphology at scale lengths less

than a few tens of kilometers.

The same cannot be said for swath 5, collected in the North Atlantic. The comparison

between real and synthetic data (Figure 2.17) is obviously poor. Although the rms height,

orientation, and aspect ratio of the small-scale topography are reasonably well fit, the
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overall statistical character of the seafloor is quite different from that given by the second-

order model. First, the data exhibit a strong periodic behavior, which would require the

power spectrum to be peaked and the covariance function to oscillate between positive and

negative values. Generalizing the form of Chh to allow for a stronger periodicity would

improve the agreement. It is also clear that the jaggedness and asymmetry of the peaks

caused by faulting, as well as the flatness of the valleys caused by differential

sedimentation, will require the use of non-Gaussian statistics. Extending the space-domain

forward modeling and inversion procedures developed in this study to the analysis of

higher-order correlation functions is one approach to the problem.

CONCLUSIONS

In this chapter we have developed a method for estimating stochastic parameters of the

seafloor from Sea Beam transit data that accounts for the finite precision, resolution and

sampling of the multibeam echo sounding system. In this initial work we have restricted

our attention to the recovery of second-order statistics, although the space domain methods

developed here can be generalized to higher-order analysis. The seafloor is modeled as a

stationary, zero-mean, Gaussian random field completely specified by its covariance

function. The parameterized form of the covariance function given by (2.21) is employed

which generalizes expressions used by previous authors. The five independent parameters

of this second-order model specify the rms height and characteristic scale of the

topography, the orientation and aspect ratio of its anisotropy, and its decay with increasing

wave number. Using a linear approximation to the echo sounder response, we have solved

the forward problem relating the second-order model to the along-track autocovariance

functions of individual beams and cross-covariance functions between beams of arbitrary

separation. The finite beam width, precision and sampling of the multibeam echosounder

is explicitly included in our space-domain formulation. Proceeding from this forward
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problem, we have obtained estimates of model parameters from a linearized, least squares

inversion of the Sea Beam autocovariance and cross-covariance data.

We have developed a Fourier method for generating numerical realizations of the

stochastic topography, allowing the creation images of arbitrary resolution and scale using

the parameters derived from inversion of Sea Beam data. Such images render the

statistical character of the model to all orders, not just the two-point averages employed in

the inversion. By feeding these images through the linearized response of the multichannel

system, we have been able to generate "Sea Beam synthetics" for comparison with the

actual data. Such synthetics provide a powerful method for assessing all of the modeling

assumptions.

The synthetic-data comparisons show that the procedures described above generally

yield good first-order stochastic descriptions of seafloor morphology. We are therefore

confident that they can be used to map important geomorphic characteristics and study the

geological processes that shape the seafloor. However, the comparisons also show that

more complex analysis will be necessary to map other geologically significant

characteristics. First, the periodicity exhibited by swath 5 indicates that the covariance

function used in this case does not provide a very good approximation and generalizing its

form may be necessary. This could be done by a more complex parameterization or by a

direct inversion for Chh as a function of spatial lag. Second, characteristics such as

sediment ponding and abyssal-hill tilting will require the use of non-Gaussian statistical

descriptions. One possibility is to extend this analysis to the recovery of higher-order

correlation functions. Finally, nonstationarity appears to exist in some cases with scale

lengths less than the length of record needed for resolving statistical parameters. In such

cases the parameter estimation tends to be biased toward smaller scale lengths.

Incorporating nonstationary behavior into the stochastic description is an important problem

for future consideration.
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The stochastic model allows us to go beyond the constraints of the echo sounding

system. Generating synthetic topography to fine scales from estimated stochastic

parameters thus represent extrapolations of the observed lower-wave-number power-law

behavior into the high-wave-number domain. This is a simple procedure mathematically,

but whether or not such extrapolations are physically valid is still an unanswered question.

It is likely, for example, that the large-scale behavior of surface faulting cannot be

extrapolated to small-scale faulting; i.e., there may exist a minimum scale below which

surface faulting does not occur. On the other hand, it is easy to envisage volcanic

extrusives producing features down to the smallest measurable scales. This question is

important to the field of acoustic seafloor scattering (as well as marine geology ), which

requires a knowledge of seafloor roughness characteristics at scales much smaller than Sea

Beam resolution. Answering this question will require the coordinated measurement of

seafloor bathymetry using instruments of differing resolution.

Fine-tuning our stochastic description of the seafloor will require improvements in the

statistical model of Sea Beam response and noise. Both represent very interesting

problems in seafloor acoustics. To refine our analysis of Sea Beam response, we must be

able to model the nonlinear relationship between a stochastic seafloor and a narrow-beam

echo sounding. To obtain a more adequate description of the noise, we need to model its

correlation with topography.
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Figure 2.1. Functional form of the model covariance function, G %(r), plotted fcr values
of v = 0, 1/2, and 1 (top panel), and their normalized Fourier transforms plotted in log-log
space.
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Figure 2.2. Profiles of sample surfaces generated from the zmodel covariance function
(1.21) for five values of v. The Hausdorff dimension of each surface is D = 3 - v, and for
each profile D = 2- v. Each profile is drawn from 5000 sampled points.
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Figure 2.3. Geographic positions of the five swaths listed in Table 2.1. Crosses mark
starting and stopping points for each data set.
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Figure 2.4. One hour record of Sea Beam data from swath 1 plotted (a) in raw form,with depth reorded by each beam plotted continuously as a function of track distance, (b)as a 5-ping averaging of the raw data, and (c) as a 20 m contour plot of the 5-ping averageddata. Forward ship direction is left-to-right. Gaps in Figure Sa indicate dropped data.
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Figure 2.5. Geometric illustration of (2.27) and the coordinate representation.
Concentric ellipses (center figure) represent contours of the covariance function Chh(x),
with principle axes i n and 6s as shown. Cs is the angle between North and 6s, measured
clockwise (top figure). Ship coordinates 61 and 62 are the along- and across-track
directions, respectively. With the autocovariance function centered on the p beam, the
parallel beams q, p, and r, separated by distances of Aqp and A~pr as shown, trace cross
sections of the covariance function which form the crosi-covariance functions Cpq, Cpp,
and Cpr respectively (bottom figure).
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Figure 2.6. Illustration of the effects of a linear response and white noise on the
autocovariance function and the power spectrum of a single beam of Sea Beam data.
Unaffected curves, representing the perfect echo sounder assumption, are shown in dashed
lines for comparison.
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Figure 2.7. Comparison of autocovariance (with insert showing enlargement of origin)
and power spectrum estimates calculated from beam -3 of swath 3 (solid curves) with
model curves (dashed) generated from (2.31) and its Fourier transform respectively. Two
model curves are plotted, using (top) the perfect echosounder assumption, and (bottom)
Sea Beam response and noise parameters appropriate to this beam (compare Figure 7). The
parameters used to generate model curves are listed in Table 2.3 for swath 3.
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Figure 2.8. Rms noise versus beam number for each of the five Sea Beam swaths listed
in Table 2. 1. Rms noise for each beam is assumed to be the square root of the difference
between the zeroth and first lag of the autocovariance estimation.
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Figure 2.9. Comparison of autocovariance estimates for beams -6, -3,0, 2, and 5 (solid
curves, positive lag only) from swath 1 with the autocovariance model (dashed curve)
generated from parameters obtained using step 4a of the inversion procedure. The rms
value of the noise spike added to the origin of the model curve was measured from the
autocovariance estimate for the center beam.
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Figure 2.11. Steps involved in generating synthetic Sea Beam data: (a) a synthetic
topographic surface is generated from the estimated model parameters by the Fourier
method, (b) the response function is convolved with the topography to obtain the beam
values on a rectangular grid approximating Sea Beam points, (c) a Gaussian white noise is
added with an rms value appropriate to the system noise observed on each beam, and (d)
data are dropped at random to match the observed dropout rate.
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Figure 2.12. Comparison of 5 hours of 5-ping averaged data from swath I to 5 hours
of 5-ping averaged synthetic data. The synthetic data were generated using the covariance
model and rms noise values obtained from swath 1. Data drops were not included. The
large gap in the real data between 0230 and 0300 hours is the location of a seamount that
was deleted from consideration in the calculation of the cross-covariance estimates.
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Figure 2.13. Comparison of I hour of raw data from swath 1 to 1 hour of synthetic
data. The synthetic data were generated using the covariance model, rms noise, and drop
values obtained from swath 1. Lower panels of each set show the result of subtracting a 5-
point running mean from the data.
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CHAPTER 3

RESOLUTION OF TOPOGRAPHIC PARAMETERS BY SEA BEAM DATA

INTRODUCTION

An inherent difficulty lies in any attempt to quantify stochastic observations: an estimate

of a random parameter requires the averaging of many observations, and we can never be

sure that our sample observations all have the same stochastic characteristics (stationary

statistics). The stochastic character of the seafloor does change considerably (non-

stationary statistics), and it is precisely the nature of this change that we wish to quantify;

i.e. we would like to delineate stochastic provinces of the seafloor in order to identify

acoustic domains and to relate the provinces to geologic variables such as spreading rate

and age. It is therefore critical to address the question of how many data are needed to

make a well-resolved stochastic characterization; i.e. when are the errors in the

characterization sufficiently small to distinguish one terrain from another? This will tell us

what the minimum scale is over which we can detect changes in stochastic behavior. We

also must be content with our inability to detect changes at smaller scales.

Figure 3.1, showing 9 hours of Sea Beam data from the South Atlantic, is a clear

example of a change in stochastic behavior: the topography before -1700 hours is visually

very different from the topography following that time. The clearest difference is that the

amplitude of topographic variation is much greater after than it is before 1700 hours. What

is the quantitative expression of this difference? We should expect that something so easily

seen by the eye will be easily resolved by stochastic modeling. Are there other differences

which are not obvious to the eye? How well resolved might these differences be given the
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quantity of data that we have? These are questions which must be addressed if we are to

attempt to characterize seafloor terrains by stochastic methods.

In the last chapter we proposed a parameterized model for the stochastic description of

the seatloor and developed a method for estimating these parameters from multibeam

echosounding data such as derived from a Sea Beam system. In this chapter we explore in

detail the resolution capabilities of this inversion as a function of ship variables such as

track length, the orientation of the ship track with respect to the topographic grain, and

finite beam-width response of the echosounder. The primary purpose of this study will be

to assess the performance of the inversion and to determine the scale at which changes in

the stochastic behavior of the seafloor can be detected. The information we obtain should

also prove invaluable in efforts to design sea-going experiments.

This study employs space-domain techniques to characterize the stochastic behavior of

the seafloor. Changes in stochastic behavior are determined by resolvable changes in

parameters describing the 2-point moment, or covariance function. Other workers have

attempted to locate changes in stochastic behavior using parametric methods in the Fourier

domain [Fox and Haves, 1985; Malinverno, 1989]. The primary advantage of space-

domain methods is that we can invert the data directly without having to regrid or

interpolate them.

This analysis is made possible by the procedure, described in Chapter 1 and Appendix

B, to synthesize realistic multibeam data sets from a stochastic description of the seafloor

and a simple mathematical description of the Sea Beam system effects (Figure 3.2). This

allows us to generate many independent data sets with identical statistics which can be

inverted in the same manner as real data. The mean and standard deviation of the inverted

parameters can then be computed from these Monte Carlo realizations and directly

compared with the input parameters and the standard errors estimated from individual

inversions.
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To generate synthetic topography and perform an error analysis, it is assumed that the

joint probability distribution of depth is Gaussian. In this case, all higher moments of the

distribution can be expressed in terms of the covariance function. Although the seafloor

tends to fail the Kolmogorov-Smirnov test for acceptance of the Gaussian hypothesis

[Gilbert and Malinverno, 1988], the distribution of seafloor depths is nevertheless nearly

Gaussian [Bell, 1975b]; i.e. the probability density function is peaked near the mean depth

and decays to zero similarly in both positive and negative directions. Since we are only

characterizing the distribution to second order, the Gaussian assumption is sufficient; the

properties of any distribution to second order can be described by a Gaussian form with the

same first and second order properties. The study of higher-order moments of the seafloor

depth distribution will be an analysis of perturbations from the Gaussian form.

COVARIANCE OF THE ESTIMATES

To understand the resolution of the estimated parameters, we must have knowledge

concerning the uncertainty structure (i.e. covariance) of our data functionals (the estimated

auto- and cross-covariance functions of the beams). The function Vpqrs(J,l) expresses the

covariance of the estimated seafloor covariance function, or, more simply stated, the

covariance of the estimates. It contains information regarding the variability, or variance of

the covariance estimate about the expected (model) value and the correlation between two

covariance estimates of different lag coordinates. Variability tells us how far off the

estimation may reasonably be from the expected value. The correlation between estimates

tells us to what degree of accuracy we can predict the value of one covariance estimation

given another. In order to understand the behavior of the estimates and the way in which

this behavior factors as a weighting function in the inversion, we must understand the

functional form of Vpqrs(Mj).
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Although in general Vpqrs(JJ) is computed by numerical integration, a simplifying case

that can be approximated analytically is sufficient to demonstrate its structure. Setting v =

1/2 and B(x,t) = ( we compute V,,,,,p(j,t), the covariance of an estimated single-beam

autocovariance function, by approximating the summations in (2.38) by integrals. We

define beam lag distance by xj= v1, and beam data length by Xj = MjvAtj, which expresses

the amount of data used in the autocovariance estimation at lag j. k, is the scale parameter

in the ship track (ej) direction. For v = 1/2 (a fair approximation to rough, unsedimented

seafloor), GXr)/G,(O) = exp(-Iri), which greatly simplifies integration and yields

o 1) H' j[1 +2 oxp-[k1 (x--x,)] +ki X , L j - x,) + _

S1 +k 1 (x.+x)+l2 exp-[k(x +x ] } +

2 H J

15 + 0 2(3.1)

Equation (3.1) assumes xj is greater than or equal to xt . Typical values of H2 and N. 2

range from 1000-50000 m2 and 25-500 m2 respectively and tend to be positively

correlated (see Chapter 2). In general then, H 2 >> Np2 and we can disregard the

contribution of system noise to the variation of the estimates. The dimensionless factor

ktX is typically greater than 10, so that the terms in (3.1) of order (kX)-2 may also be

disregarded. These approximations simplify (3.1) to the following form:
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H4

VPPj, 1,/) H I + kl(x -x)] exp -[k,(x -x )] +

[I + k, (x + x,)] exp -[k, (x + x,)l  (3.2)

The dependence of the estimation covariance on some of the important model and data

parameters is made clear in equation (3.2): Vpppl) increases with the rms topographic

height H, decreases linearly with the inverse of length of data used in the estimation X, and

decreases with increasing along-track scale parameter k1. We can physically interpret these

relationships in the following ways: The variability of the estimates (determined by the

case j = 1) will increase with variation of topography. Variability will decrease with

increased data length because more data will better constrain the estimate. However, H and

X do not affect the correlation among estimates (correlation = covariance/variance) since

they multiply all lags equally. k1, on the other hand, affects both the variability and the

cor',ation of the estimates. Given two scale parameters where kl' is larger than k1 , A .'

will be less than A,. Thus, for a given data length, the characteristic length A,.' will be

sampled more often than LI. This will increase the amount of independent information,

and thus better constrain the estimates and decrease their variability. Topography with the

shorter scale length A1,' will also vary more rapidly and erratically than topography with the

longtr scale length AI . Hence the correlation among estimates will be decreased for the

short,:r scale length (larger scale parameter). These effects are easily seen in Figure 3.3,

wherez two sets of autocovariance estimates from 20 independently generated synthetic

profiles are plotted. The parameters used to generate the profiles were H = 55 m, v = 0.5,

and k, = 1.0 km -I (top panel) and 0.5 km 1 (bottom panel). Clearly the variance of the

estimates is greater for the smaller scale parameter k, = 0.5 km -1 . Also, the estimates tend

to vary about the expected value more rapidly with lag for the larger scale parameter k, -

1.0 km, indicating that the correlation among estimates is less than where k, = 0.5 km-1.
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The form of Vpppp(j,l) is dependent on a lag separation (xj - x) and a lag distance (xj +

x1)/2. Figure 3.4 shows VPPP(',l) as a function of lag distance for four different lag

separations. k, is set to 1, H is set to 55 m, X0 is set to 200 km, and Xj and Xt decrease

linearly with xj and xj. Each of the curves in Figure 3.4 initially decrease with lag distance,

and eventually increase gradually at large lag distances as X, and Xt decrease linearly. The

lag distance at which these curves flatten out is dependent on the scale parameter. The case

where lag separation is zero represents the variance of the estimates. Thus the estimates

should exhibit their greatest variability at smallest lag. We might expect then that the

weighting of the inversion will de-emphasize the importance of small-lag estimations.

However, the correlation among estimates is also greatest at small lags. Thus, while the

variability of the estimates at small lag may be large, the shape of the estimated function is

best-constrained in this region. This phenomenon results from the fact that although we are

sampling smaller lags more often than larger lags, and thus better constraining the shape of

the autocovariance at small lags, the smaller features are superimposed on the larger ones

so that the variance of the larger scales contributes to the total variance at smaller scales.

These effects can also be seen in Figure 3.3. The dashed lines represent 95%

confidence limits (1.96 times the square root of Vppp(]j)) on the variance of the estimates

about the expected value. Thus we expect one estimate out of 20 to be outside of these

limits at any lag. This is generally true in both cases shown in Figure 3.3. The variance

does decrease with lag, but this effect is not clearly visible since the decrease is only -25%,

and the curvature near zero lag gives the illusory appearance of better vertical constraint.

More easily seen is the stronger correlation near zero lag. The estimates more consistently

follow the shape of the expected autocovariance form in this region. Since we are primarily

interested in inverting for the form of the covariance function the shape of estimates at the

smallest lags should receive the most weight, and this is indeed the case.

The full form of Vpqrs(ij) is obviously more complicated than equation (3.2), but the

principal points stated above are still valid. In the general case we can identify scale
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parameters, lag distances, and lag separations that are directionally dependent and have the

same effect on the behavior of the covariance of the estimates as in the one-dimensional

case. The order parameter v, which is inversely proportional to roughness, also affects

Vpqs(j,l) in an important way: the correlation of estimates near zero lag increases with v, as

larger values of v mean smoother topography and hence greater correlation of the estimates.

NUMERICAL EXPERIMENTS

The inversion algorithm provides as output estimates of the covariance parameters and

their formal uncertainties, both of which we assume are accurate and unbiased. However,

complexities in the inversion, principally the nonlinearity of the problem, force us to

question this assumption. In a linear inverse problem, a Gaussian distribution of data

results in a Gaussian distribution of inverted parameters. In this case the diagonals of the

parameter covariance matrix are easily interpreted as the variances of the parameters. In the

non-linear problem, the error distribution of inverted parameters is non-Gaussian.

However, since the solution is derived by an iterative, linearized process, the parameter

covariance matrix assumes a Gaussian form for the distribution of parameters, and thus

does not express the true resolution of the problem. We therefore explore how well the

linearized standard errors match the variations calculated in numerical experiments.

In this procedure, we generate several synthetic multibeam data sets with identical

known statistics. This is accomplished using the algorithm described in the previous

chapter. The synthetic data produced by this algorithm are Gaussian distributed. Each

synthetic data set is then inverted as if their statistics were unknown. The mean and

standard deviation of the parameters output from the inversion can be directly compared

with the input parameters and the average linearized standard errors respectively. In this

section we present the results of several such experiments conducted under a variety of

circumstances. There are two goals in this study: (1) to determine how accurate the
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estimated parameters and their standard errors are, and (2) to investigate the resolution of

parameters with respect to ship variables such as length of data, angle with respect to the

topographic grain, and response width.

The split algorithm for estimating the Hausdorff dimension prior to estimating th

remaining parameters was described in the previous chapter. The two steps are considered

here separately.

Estimation of Scale and Orientation Parameters

We begin with numerical tests of step 2 of the inversion algorithm. For the following

experiments we set v = 1/2 (D = 5/2) for both the synthesis of data and the inversion of the

remaining parameters. This value of the fractal dimension is appropriate for rough,

unsedimented seafloor terrain. (Although variations in v can compensate variations in the

scale parameters k, and k3, this trade-off is largely described by (2.24) so that the

characteristic lengths A. and A, are not strongly correlated with v.)

Figures 3.5 and 3.6 show the results of numerical experiments conducted on synthetic

Sea Beam data generated from surfaces with covariance parameters H = 65 m, k. = 0.48

km-1 (A. = 5.9 km), and ks = 0.12 km-1 (, = 23.6 kin), using a response width of 0.63

km, and values for the rms noise ranging from 5 in at the center beam to 15 m on the outer

beams. All subsequent experiments also use these noise values. 0 is defined as the angle

between the ship track and the i,, (spreading) direction (Figure 3.2). These parameters,

which were used to generate the topography shown in Figure 3.2, are typical of seafloor in

the northeast Pacific ocean. Each data point plotted represents the average result of the

inversion of 20 independent synthetic data sets. The solid bars represent their standard

deviation, and the dashed bars the average of the 20 linearized standard errors from the

inversion. Figure 3.5 shows such results for four different track lengths, ranging from

300 kn to 75 km, with 0 = 00. In general it is clear that we have succeeded in recovering

the covariance parameters that were used to generate the synthetic surface; in all cases the
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averages of the parameters estimated from the 20 inversions are within a small fraction of

the observed deviation from the input parameters. The average linearized standard errors

from the inversions are generally within -10-20% of the observed deviation of the

inversion results. The principle exception is for the parameter 9, where the average

linearized standard errors tend to overestimate the observed deviation by up to a factor of

two, and effect probably ascribable to the linearization. The errors tend to increase with

decreasing track length, as expected. We note that the relative errors for k,, and k, are

nearly identical.

Figure 3.6 shows the results for tracks of constant length (150 kin) trending at five

different values of 0. The errors for all parameters increase with angle to the i,, axis. It

may at first be surprising that our best resolution of the parameter k, comes when the ship

track runs perpendicular to the ks axis. The maximum lag distance in this direction when 0

= 0' is only the width of the Sea Beam swath (-4 km), whereas when 0 = 900, it is the

track length. The reasons that resolution of ks is better in the former case are (1) that the

shape of the covariance function is best-constrained near zero lag and (2) we are

independently sampling that region more often because the characteristic length in the i,,

direction is shorter. Thus, the primary determinant of the resolution of all the covariance

parameters is the number of characteristic lengths in the along-track profile.

Figures 3.7 and 3.8 show results equivalent to Figures 3.5 and 3.6, respectively, for

numerical experiments conducted on synthetic Sea Beam data generated from surfaces with

covariance parameters H = 63.2 m, k,, = 1.7 km- 1 (A.,, = 1.7 kin), and k, = 0.2 kin-1 (), =

14.1 kin), and using a response width of 0.39 km. These parameters, which indicate

shorter scale lengths and a greater aspect ratio (-twice as large) than the previous examples,

are fairly typical of seafloor near the East Pacific Rise. The results are similar to the

previous experiments. However, since characteristic lengths are smaller, shorter sections

of data are adequate to make good estimations. Where track lengths in Figures 3.5 and 3.7

are similar in terms of number of characteristic lengths sampled along track, the relative
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errors in the scale parameters are nearly identical. The greater aspect ratio in the latter case

improves the resolution of 0. However, it also causes the estimation errors to be a stronger

function of ship direction.

The preceding experiments help us to determine what is well-resolved in an absolute

sense. The resolution of all parameters is strongly dependent on the number of

characteristic lengths sampled by a Sea Beam track, so it is natural to ask: how many

characteristic lengths do we need? The resolution of H appears to be very good in all

cases. The worst case is shown in Figure 3.8, 0 = 900, where the error is less than 15% of

the value of H and the number of characteristic lengths sampled is only 3.5. Thus we can

obtain very good estimates of H with quite short track lengths, especially if the ship track

runs across the topographic grain. 0 is also well estimated for all cases, with a maximum

error of -5* (Figure 3.6). However, 0 is dependent on the aspect ratio a. Aspect ratios as

low as 2 have been observed (see chapter 5), and in these cases the errors in 0 can be 10°

or larger. The scale parameter estimates have larger relative errors: -12% where the track

lengths exceed 50 characteristic lengths (Figures 3.5 and 3.7) and up to -50% at 3.5

characteristic lengths (Figure 3.8). 50% errors are too large to make quantitative statements

about abyssal hill morphology that are geologically interesting. The errors are generally

well behaved, remaining below -25%, until about 5 (Figure 3.8) or 6 (Figure 3.6)

characteristic lengths, where the errors rise to -30%. Thus, as a general rule of thumb, we

consider 5 or 6 characteristic lengths to be a minimum track length necessary to resolve the

scale parameters.

In evaluating the resolving power of a data set, important quantities to consider are the

correlations between parameter estimation errors. The correlation coefficient between two

parameters 1 and 2 is defined by the ratio of the covariance between parameters C12 to the

product of their standard deviations a, and 2: P12 = C 12/a1a 2 (-1 e P12 ! 1). The

parameter covariance matrix is readily obtained from the inversion and thus the correlation

coefficients can be calculated. In the numerical experiments hown in Figures 3.5 and 3.6,



79

H was found to be negatively correlated with k, and k. (p = -0.75), k,, and k. where

highly correlated with each other (p = +0.85), and 0 was poorly correlated with all the

other parameters (Ipl < 0.03). Figure 3.9 illustrates three of these correlations by plotting

parameters derived from individual inversions for the case 0 = 0 and track length = 75 km.

Where the correlation is positive (k,, vs. ks), these points cluster about a line with positive

slope, where the correlation is negative (H vs. ks), they cluster about a line with negative

slope, and where the correlation is near zero (H vs. 6), there is no discernible pattern. In

each case the spread of these points matches the shape of the 1-a error ellipses (39%

confidence) very well. The correlation coefficients are nearly identical for the numerical

experiments shown in Figures 3.7 and 3.8, with the only appreciable difference being in

the correlation between k,, and k, (p = .75).

Estimation of Hausdorff Dimension

Experimentation has shown that no more than about two dozen covariance estimations at

well-spaced lags from all the cross-covariances of 3-4 beams (as widely spaced as

possible), spread out over the length of -3-4 characteristic widths centered about the

maximum cross-covariance, are needed for step 2 of the inversion. Beyond this quantity of

data, the errors in the estimated parameters do not appreciably decrease with increased data.

This is a result of the strong covariance among estimates which limits the amount of

independent information available.

A different strategy is needed for optimizing step 1 of the inversion. The Hausdorff

dimension is primarily dependent on the shape and curvature of the covariance function

near zero lag. The information constraining the Hausdorff dimension is not several single

estimations at various lags, as in step 2, but rather the shapes produced by sets of

estimations with closely spaced lag coordinates. In this case, it is necessary to take into

account the strong correlation among nearby estimates for the inversion to work. Single-

beam autocovariances are the only Sea Beam cross-covariances which adequately constrain
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the shape of the 2-D covariance near zero lag (e.g. equation (2.27)). Thus, step I of the

inversion must include many closely space points near the origin of these autocovariance

functions.

Using estimation points which are closely spaced and highly correlated makes the

inversion susceptible to small deviations from the expected form. This is particularly true

for higher values of v and larger response functions since in these cases the correlation

among estimates near zero lag is greater. Small-scale variations in the covariance due to

noise, which are negligible in step 2, can be significant in step 1. We might expect to be

able to solve this problem by including the contribution of noise in the covariance of the

estimates. Unfortunately this contributes to destabilization by reducing the correlation

among estimates necessary for the inversion to work, and also biases the estimation of v.

We find that the convergence properties of step 1 are best stabilized when the

covariances between single-beam autocovariance estimations are ignored; i.e. each beam is

treated as independent from all other beams. Because beams are widely separated from

each other compared with the along-track sample spacing, the beams should be fairly

independent of each other with respect to the Hausdorff dimension. We would expect the

standard errors to be underestimated in such an inversion since we are claiming more

independent information than we actually have. However, in general we find that the

theoretical standard errors on v tend to overestimate the observed variation (probably

because of the non-linearity of the estimation problem) so that the inversion of 2 or 3

autocovariances treated independently yields theoretical standard errors on v which are

close to the observed variation.

Figure 3.10 shows numerical tests of step 1 conducted on synthetic Sea Beam data

generated from surfaces with covariance parameters H = 65 m and k,, = =0.5 km-1, and

using a response width of 0.5 krn. Two different Hausdorff dimensions and four track

lengths were used. Data points from two autocovanance estimations were used in these

inversions. The results in this case are quite favorable; the averages of the 20 estimated
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values of v are well within the observed deviation of the input parameters, and the

linearized standard errors are within -10-20% of the observed deviations. As expected, the

errors increase with decreasing track length, and tend to be slightly larger in the case of the

lower Hausdcff dimension. There is also some evidence that at low Hausdorff

dimension, the estimation of the Hausdorff dimension becomes slightly biased high at

shorter track lengths. This may result from fact that v is constrained to be less than I and

greater than 0; i.e. as the errors increase for estimation of v close to 1, there is a greater

likelihood of larger errors toward smaller values of v than toward larger values of v.

Resolution of the Hausdorff dimension is also heavily dependent on the width of the

response function in relation to the characteristic length. Figure 3.11 shows numerical tests

of step I conducted on synthetic Sea Beam data generated from surfaces with covariance

parameters H = 65 m, k,, = k, = 1.5 km-1 and D = 2.5, a track length of 200 km, and

echosounder response widths ranging from 0.0 (8 response) to 0.5 km. The characteristic

length in this case (1.9 kin) is three times shorter than for the D = 2.5 tests in Figure 3.10.

The observed deviation is well-constrained (< + 0.1) at short response widths, but

becomes quite large (± 0.17) when the response functio. .--aches 0.5 km. The linearized

standard errors, which increase only modestly with increasing response width, do not

match this behavior well. Failure to include the effects of noise into the error calculations is

a probable cause for this discrepancy.

Assuming an incorrect response width can have a drastic effect on the estimation of the

Hausdorff dimension. Figure 3.12 shows numerical tests of step 1 conducted on synthetic

Sea Beam data generated from surfaces with covariance parameters H = 65 m, k,, = ks=

1.5 km-1 and D = 2.5, a track length of 200 km, and echosounder response width 0.3 km.

The inversions were conducted assuming response widths ranging from 0.0 to 0.5 km.

100 m errors in the assumed response, width result in errors in the estimation of D of

between 0.1 and 0.2. Failure to consider the echosounder response at all results in errors



82

greater than 0.2. This experiment clearly demonstrates the need for accurate calibration of

the echosounding system.

RESOLVABILITY OF NON-STATIONARY BEHAVIOR

It is impossible to address the problem of what is well-resolved with respect to non-

stationarity without first identifying limitations on the detectability of stochastic changes.

For example, we may wish to identify changes in stochastic character which occur over

preset horizontal scales. This would require us to use data sets of a limited track length,

which in turn limits the resolution of our parameters. Changes in stochastic character

which are within this resolution will not be detected. On the other hand, we may wish to

identify changes in stochastic character with a preset resolution. This would require us to

use long t",ough track lengths of data to obtain this resolution. Changes in stochastic

character on horizontal scale lengths shorter than such track lengths will also not be

detected.

The Sea Beam data shown in Figure 3.1 provides us with an interesting test case for

investigating the resolution of non-stationary behavior. Table 3.1 shows the inversion

results for the entire data set, for the data prior to 1700 hours, and for dhe data after 1700

hours. In this case we are interested in determining what parameter changes can be

detected given these constraints on data lengths. As is visually obvious, there exists a

clearly resolvable difference between the rms heights of the two sections. The data after

1700 hours exhibits nearly a factor of three times the variation in the data prior to 1700

hours. Less visually obvious, and perhaps more interesting, is the fact that there is also a

difference in azimuths of the abyssal hill lineation. The data prior to 1700, trending at -13*

± 50, is consistent with the trend of the mid-Atlantic ridge at this latitude (3.5 0 S), whereas

the data after 1700 hours, trending at 3' ± 90, is not. The lineation difference is resolved at

80% confidence in this case since the difference AO = 160 is greater than the standard
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deviation ao = q(o12 + a 2
2) = 100. This difference should have important implications for

understanding the processes which shaped this terrain. Neither the scale parameters nor the

aspect ratios are resolvably different for this comparison. If there is a difference in these

parameters, then it is clear that longer d.ta lengths will be needed to resolve it. We were

also not abie to distinguish the two data sets by a difference in Hausdorff dimension. The

inversion of the data before 1700 hours for the Hausdorff dimension was very poorly

constrained, tending to settle on a value of D _ 2.1 ± 0.3. Inverting the data after 1700

hours produced an estimate of D = 2.30 ± 0.14. For inverting the scale and orientation

parameters of the data prior to 1700 hours, we fixed D at 2.25 for better comparison with

the other data sets. The inversion for the full data set, while tending to split the difference

between the two sub-data sets, is more consistent with the data set after 1700 hours. This

is to be expected since the much larger amplitude characteristics will tend to dominate the

covariance.

As demonstrated in the previous chapter, an important means of subjectively assessing

how well we are modeling the stochastic character of the data is to visually compare the

data with a synthetic data set generated from the estimated model parameters. Figures 3.13

and 3.14 are data-synthetic comparisons for the data shown in Figure 3.1 prior to and after

1700 hours respectively. The comparison for the data prior to 1700 hours (Figure 3.13) is

quite good: the along- and across-track characteristic scales, the rms height, the direction of

lineation and the small-scale roughness are all favorably comparable. The primary

difference :- that the "valleys" of the real data set are rounded compared with the peaks,

whereas no such difference exists in the synthetic data. This phenomenon is likely a result

of sediment ponding, and causes an asymmetric distribution of depth which cannot be

characterized by the Gaussian model. Future analysis will require the use of non-Gaussian

random fields. It is also likely that the Hausdorff dimension differs between the valleys

and peaks. If so, we will not be able to detect such differences because we must average

over at least several characteristic lengths. The comparison for the data after 1700 hours is
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less favorable; primarily the cross-track characteristic lengths appear too short in the

synthetic. A value of k. more consistent with the earlier data set would be more

appropriate, suggesting that a longer data set would not resolve any difference in this

parameter for this particular comparison. This data set also displays some fairly exotic

terrain, such as the big flat spot at 1900 hours and the very laterally asymmetric, or tilted,

abyssal hills between 2000 hours and 2200 hours. As in the case of sediment ponding,

abyssal hill tilting will require higher-order (i.e. non-Gaussian) stochastic analysis.

DISCUSSION

The inversion of Sea Beam cross-covariance estimates for the parameters of the seafloor

covariance function provides an excellent means of quantitatively characterizing the small-

scale (100's of m to 100's of km) stochastic behavior of the seafloor. The experiments

performed in this chapter show that resolution of the covariance parameters is strongly

dependent on the number of characteristic lengths which are sampled. Rms seafloor height

can be estimated to within -15% and anisotropic orientation to within -5' (for a strong

lineation) using track lengths as short 3 characteristic lengths, or -10-100 km, and

characteristic lengths of seafloor topography can be estimated to within -25% using track

lengths as short 5 or 6 characteristic lengths, or -20-200 km. The number of characteristic

lengths sampled by a ship track, and hence the accuracy of the estimation, is maximized

when the ship track runs perpendicular to abyssal hill lineation. Ship surveys of abyssal

hill terrain should therefore include many track lines running parallel to flow lines. The

estimation of the Hausdorff dimension is more difficult with this method. The most stable

and accurate estimation of D is obtained when only autocovariance estimations closely

spaced near zero lag are used in the inversion. This inversion becomes increasingly

unstable and inaccurate as the characteristic length is shortened with respect to either the
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response width or the data spacing, as the rms noise is increased, and as the order

parameter v is increased.

The numerical experiments in this chapter do not constitute a completely thorough test of

real conditions; in the real world we are not guaranteed that the topography of the ocean

floor is Gaussian distributed, or that its covariance function necessarily conforms to the

parameterized model. If the seafloor is significantly non-Gaussian, our description of the

correlation between estimates will be in error. This will obviously affect the way estimates

are weighted. If the covariance deviates significantly from the form of the parameterized

model, the inversion will predominantly fit the form of the covariance near zero lag since

the form of the estimates in that region receives the most weight. This covariance model

does appear to be a good description of the seafloor in many regions of the seafloor from

scales between hundreds of kilometers down to Sea Beam resolution (-300 m). However,

we have no reason to believe at this point that this covariance model can be extended to

smaller scales. It is unlikely, for example, that pillow basalts bear much resemblance to

faulted abyssal hills. Extending this stochastic model to smaller scales may be possible if

we allow for changes in fractal dimension [Fox and Hayes, 1985] and azimuthal

dependence with scale. These are all problems of significant interest, and the analysis

included here provides a basis for studying them.

Uncertainties in the sonar characteristics also affect the results in this chapter. If the

response characteristics are in error, the estimation of the Hausdorff dimension will be

incorrect. For example, underestimation of the width of the response function will result in

an underestimation of the Hausdorff dimension. Also, if system noise is not white, as we

have assumed, the Hausdorff dimension can be overestimated. These uncertainties

underscore the need for calibration experiments to accurately determine the Sea Beam

response to a rough ocean floor and to properly model the system noise process, including

the correlation between noise and seafloor characteristics. If response and noise are
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properly calibrated, the Sea Beam system may prove useful for obtaining stochastic

seafloor information at scales smaller than the deterministic resolution capabilities.
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TABLE 3. 1. Statistical Parameters Derived From Inversion of Data Shown in Figure 3.1

Data, hrs i m 's, deg An , k m AS, km a D

1300-2200 164 + 15 -2 ± 7 7.9 ± 1.8 15.8 ± 4.7 2.0 ± 0.6 2.26 ± 0.10

1300-1700 75 11 -13 5 7.0 ± 1.9 21.1 ± 8.4 3.0 ± 1.1 2.1 0 .3 a

1700-2200 205 ± 33 3 - 9 8.2 ± 2.4 15.5 ± 5.4 1.9 ± 0.7 2.30 ± 0.14

a Hausdorff dimension fixed at 2.25 for inversion of scale and orientation parameters
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Figure 3.1. 9 hours of 5-ping averaged Sea Beam data from the Robert Conrad cruise
2806. Depth recorded by each beam is plotted continuously as a function of track distance.
Forward ship direction is left-to-right. The data was recorded on June 12, 1986, with
starting coordinates -3.83 0 N, -15.92*E and ending coordinates -3.30*N, -13.80*E. The
average water depth is 3644 m and the number of data points is 4271.
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represent 95% conhdnce limits on the variance of the estimates.
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Figure 3.6. Results of numerical experiments of step 2 of the inversion conducted on
synthetic Sea Beam data generated from surfaces with covariance parameters H = 65 m, k.
= 0.48 km 1- (A,1 = 5.9 kin), k, = 0.12 km4 (A, - 23.6 kin), and v - 0.5, using a track
length of 150 k, a response width of .63 km, and values for the rms noise ranging from 5
m at the center beam to 15 m on the outer beams. Five different values of 6 were used
ranging from 0 to 900. See Figure 3.5 for further details.
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Figure 3.7. Results of numerical experiments of step 2 of the inversion conducted on
synthetic Sea Beam data generated from surfaces with covariance parameters H = 63.2 m,
k, = 1.7 km" (A, = 1.7 kn), k, = 0.2 km-1 (A, = 14.l km), v = 0.5, and 0 = 0*, using a
response width of .39 kim, and values for the rms noise ranging from 5 m at the center
beam to 15 m on the outer beams. Four different track lengths were used ranging from 100
to 25 km. See Figure 3.5 for further details.
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ranging from 0 to 90*. See Figure 3.5 for further details.
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Figure 3.11. Results of numerical experiments of step I of the inversion conducted on
synthetic Sea Beam data generated from surfaces with covariance parameters H = 65m, k.
-=k - 1.3 km-' (4, = 1.9 km), v =0.5, using a track length of 200 km, and values for the
rms noise ranging from 5 mn at the center beam to 15 mn on the outer beams. Six different
response widths were used ranging from 0.0 to 0.5 km. See Figure 3.5 for further details.
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Figure 3.12. Results of numerical experiments of step I of the inversion conducted on
synthetic Sea Beam data generated from surfaces with covarimnce parameters H = 65m,

k - 1.5 km- (A. - 1.9 km), v = 0.5, using a track length of 200 km, a response width
of .3 km, and values for the rms noise ranging fiom 5 m at the center beam to 15 m on the
outer beams. Six different response widths were assumed in the inversion ranging from
0.0 to 0.5 km. See Figure 3.5 for further details.
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Figure 3.13. Comparison of 4 hours of data shown in Figure 3.1 prior to 1700 hours
with 4 hours of synthetic data. Ile synthetic data was generated using the covariance
model parameters (Table 3. 1) estimated from inverting this portion of the data, and using

aprpite rms noise values and response function.
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5 hours of synthetic data. The synthetic data was generated using the covariance model
parameters (Table 3. ) estimated from inverting this portion of the dat, and using
appropriate rms noise values and response function.
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CHAPTER 4

COMPARISON OF A STOCHASTIC SEAFLOOR MODEL WITH SEA MARC II BATHYMETRY

AND SEA BEAM DATA NEAR THE EAST PACIFIC RISE 130 - 150 N

INTRODUCTION

The stochastic model presented in Chapter 2 has so far been only marginally tested. Our

primary means of testing is to compare Sea Beam data to synthetic data generated from the

model. Although subjective, the eye proves to be a powerful tool in evaluating patterns of

randomness. Unfortunately, the limited spatial extent of the Sea Beam system in the

across-track direction and lack of significant coverage over large areas severely limits our

ability to compare the full 2-D stochastic model with actual bathymetric data, especially

with respect to abyssal hill length characteristics. A recent SeaMARC II (SM-II) survey

along the flanks and crest of the East Pacific Rise between 130 and 150 N [Edwards et al.,

1988] (Figure 4.1) provides a unique opportunity to compare stochastic models of the

seafloor against bathymetric data. Although the bathymetric resolution of the SM-II data

set examined was not entirely adequate for use in estimating stochastic character (see

Appendix C), this survey, which covered over 100 km (70,000 km 2 ) of off-axis

morphology, provides enough bathymetric coverage to portray the full 2-D shape of

abyssal hills. The SM-II survey data thus provides a more complete comparison for

evaluating the performance of the model synthetics.

Several Sea Beam tracks which are sufficiently long for use in stochastic estimation

cross the SM-II survey region (Figure 4.1). The inversion procedure is applied to the Sea

Beam swaths to estimate the stochastic character within the region. Estimated stochastic

parameters are also used to generate 2-D synthetic realizations used for comparison against
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Sea Beam swaths and sections of the gridded SM-Il survey data. These comparisons are

evaluated for the ability of the model to characterize the low-order stochastic behavior of the

seafloor. Seafloor characteristics which are not well-matched by the model for either the

Sea Beam or SM-Il comparison may provide starting points for improvement in the

modeling. The combined Sea Beam and SM-II data set allows us to compare the

performance of each bathymetric system with respect to stochastic characterization. Sea

Beam data, with better resolution at smaller scales, provides a means of ground-truthing the

stochastic characteristics of SM-I bathymetric data, which can cover much larger tracts of

seafloor than Sea Beam.

Significant variations are observed in the estimated stochastic parameters with location

and can be correlated with spatial and temporal variations in observed ridge crest

morphology. The implications of these correlations concerning the ridge crest processes

which govern the formation of abyssal hills are discussed.

DESCRIPTIVE MORPHOLOGY OF SEAFLOOR FROM SEAMARC I AND SEA BEAM DATA

The SeaMARC 11 side looking sonar imagery and bathymetry data used in this study

were taken aboard the RV Moana Wave on the MW8707 cruise. This survey covered the

crest and flanks of the East Pacific Rise from 130 N to 150 N and out to more than 100 km

east and west of the ridge crest (Figure 4.1). The SM-fl bathymetric data and its geological

interpretation are discussed in Edwards et al. [19891. The salient morphological and

structural features present in the survey area are briefly described here as they are important

to the understanding of the stochastic character of abyssal hill features in the study area.

The East Pacific Rise (EPR) crest at 120 50' N is characterized by a -10-15 km wide

crestal horst which tapers gradually to <3 km wide at 130 55' N while deepening about 100

m to the north over this segment of the ridge. North of 130 55' N the EPR crest is very

poorly defined and is characterized by sets of narrow (1-3 km wide), parallel ridges 10-40
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km long, whose crests have an average depth of about 2750 m. No continuous depth

variation of the EPR crest is evident between -14'-15' N. This type of discontinuous

crestal morphology is thought to correlate with decreased magma supply along a ridge

segment [Macdonald and Fox, 19881. The deeper level and lack of a distinct gradient along

the crest between 14'-15' N supports this interpretation and may reflect a deeper-seated

magma plumbing system that sporadically supplies the EPR crest along this segment. The

EPR flanks within the study area also show a marked asymmetry with respect to mean

depth and seamount distribution. The Cocos plate (eastern flank) is shallower (200-300 m)

than the Pacific plate (western flank), and there are nearly twice as many seamounts on the

latter compared to the west flank [Fornari et al., 1988]; these differences are most

pronounced in the area south of 140 N.

Based on the SeaMARC II side-looking imagery and the magnetic data it is apparent that

the EPR has been propagating northward through the study area [Edwards et al., 1988;

Madsen et al., 1990]. Two pseudofaults have been mapped (Figure 4.1) using the

structural data, and discrete offsets of the magnetic anomalies 2, and 2A on the Pacific plate

support the occurrence of a ridge propagating event that has persisted for the past -5 Ma

[Madsen et al., 1990]. Furthermore, the complex terrain present within the Orozco

transform [Madsen et al., 19861, which bounds the survey area to the north, and the

morphology of the EPR crest as it sweeps into the eastern Orozco/EPR ridge-transform

intersection provide further evidence that this segment of the EPR is propagating

northwards and that the tip of the propagator is currently located near the eastern

Orozco/EPR intersection.

Sea Beam data from three different cruises were used to estimate the stochastic character

of the seafloor within the SM-I survey area (Figure 4.1). The algorithm for stochastic

estimation (Chapter 2) study requires that the Sea Beam tracks be approximately straight,

sufficiently long, and cut sufficiently orthogonal to the grain of topography (see Chapter 3)

to obtain well-resolved results. The track lines shown in Figure 4.1 are the data sets which
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best satisfy these estimation criteria. With the exception of the Papatua I cruise, which

surveyed seamounts off-axis, the track lines shown in Figure 4.1 are all sections of ridge

surveys and represent the rare occasions when ship tracks continued :n fairly long straight

lines off axis.

Figure 4.2 shows the Sea Beam ridge-crossing data, which illustrate the variation in

ridge characteristics over the survey area. In these and subsequent Sea Beam data plots the

depth recorded by each beam is plotted side-by-side as a multichannel time sei.;s.

(Displaying the data in this manner rather than as contour swaths gives the viewer a better

grasp of the geometry and stochastic character of the data.) The northernmost ridge

crossing (14.80 N) shows a regional high at the ridge crest (-0800 hrs), but there is no

clearly defined crestal horst associated with the rift. The abyssal hills are large and well

defined over the entirety of the crest. This implies either that abyssal hill formation occurs

very early following crustal accretion or that there are several parallel crestal horsts with the

same amplitude and spacing as the adjacent abyssal hills. The next swath south (14.00 N)

shows the presence of a fairly well defined structural high (-2100 hrs) but the appearance

is still fairly complex. As in the previous example the abyssal hills are large and appear to

be everywhere over the ridge crest. There is also a large basin just east of the ridge crest

which may be associated with an overlapping spreading center [Macdonald et al., 19841.

In contrast, the two southernmost swaths (13.40 N and 13.20 N) show well developed

crestal horsts and smaller abyssal hills on the flanks. There also appears to be a clear point

-3 km to each side of the crestal horst at which significant abyssal hill formation occurs.

This distance is roughly consistent with the limit of tectonic activity observed by

Choukroune et al. [ 1984] at the EPR crest near 120 49' N, and roughly corresponds to the

off-axis limit of the subaxial magma chamber detected in this region [Derrick et al., 1987].

The propagator pseudofault can be seen on the Sea Beam data. Figure 4.3 shows data

from the Papatua I swath (Figure 4.1) which crosses it (though in this region it is not

within the SM-II survey area). The pseudofault consists of a tandem structural high and
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low (-0130-0245 hrs) which are considerably broader and larger than the surrounding

abyssal hill structures. It appears from this plot that the abyssal hills east of the pseudofault

are broader and shorter than those to the west. By applying the inversion method we can

quantify this difference.

SEA BEAM RESULTS AND DATA-SYNTHETIC COMPARISONS

The location of the Sea Beam data sets used in an inversion (labeled swaths 1 through 6)

are given in Figure 4.4. Details concerning these swaths are listed in Table 4.1. Each side

of the northernmost Ceres 2 swath was detrended (by subtracting a best-fitting line along

track) and inverted individually. The parameters estimated from the inversion were nearly

identical for each side. Only one side is used as an example in this chapter. For the

RC2607 swath, because of the short track length, data on either side of the ridge high were

detrended individually and the result combined into one data set for use in the inversion.

For the southern Ceres 2 swath, only data east of the ridge were used. Three sections of

the Papatua 1 swath west of the ridge high were used and each detrended and inverted

individually. The sections include a near ridge swath, a swath just east, and one just west

of the propagator pseudofault.

The results of the inversions, along with 1-o errors, are given in Table 4.2. It was not

possible to adequately resolve the Hausdorff dimension for any of the swaths. This was

due to the fact that the width of the echosounder response (the full width of the beam) is a

significant portion of the characteristic length of the topographic profile in the ship

direction, thereby masking the behavior of the seafloor covariance near the origin (see

Chapter 3). The characteristic abyssal hill widths in this region are among the narrowest of

the samples of seafloor that we have observed (see Chapter 5). In all the inversions the

Hausdorff dimension was constrained to be 2.5, a value we consider appropriate for

rough, unsedimented seafloor. The inverted parameters indicate a large range of stochastic
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character for the SM-II survey region; each of the swaths is resolvably different at 67%

certainty with respect to at least one parameter from each of the other swaths (Table 4.2).

To assess how well the covariance model and its estimated parameters are characterizing

the stochastic properties of the seafloor, we need to evaluate more than just the fit of the

model covariance to the estimated covariance; we need to compare the model against the

original data. We can do this by the procedure described in Chapter 2 for visually

comparing the stochastic character of the data and the synthetic. Although subjective, such

comparisons can be an intuitively powerful means of gauging the performance of the model

and suggest new directions needed to improve it.

Figures 4.5-4.10 show the data synthetic comparison for the 6 swaths shown in Figure

4.4 and listed in Table 4.1. The parameters used to generate the synthetic topography for

each case are listed in Table 4.2. In these figures we have plotted 50 km rather than the

whole of each swath to facilitate comparison among the swaths. On first inspection, all of

these comparisons are favorable; the topographic variation, the characteristic abyssal hill

widths, and the lineation azimuths are all well matched by the synthetics. The abyssal hill

lengths also appear to be well matched, though the comparison is not clear given the short

sampling in the across-track direction. These comparisons suggest that the covariance

model (2.21) is generally successful at quantifying the low-order stochastic character of

abyssal hill morphology in this region.

The comparisons of Figures 4.5-4.10 are, as we might expect, far from perfect. The

differences in stochastic character occur primarily in the finer detail. On swaths 3 and 5

(Figures 4.7 and 4.9), and to a lesser extent on the rest of the swaths, the high-

wavenumber character or small-scale roughness seen in the synthetics does not compare

well with the data. In these cases the synthetics are rougher at small scales than the data,

suggesting that a lower Hausdorff dimension than D = 2.5 should have been employed. It

may also be the case that we have underestimated the width of the echosounder response

function, or are improperly modeling the response as a linear filter. The use of an incorrect
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Hausdorff dimension or response function will not significantly affect the estimation of rms

height, the lineation azimuth, or the characteristic width and length (see chapter 2).

Closer inspection of the data reveals another possible explanation for the roughness

discrepancy. There exists valleys on most of the swaths which are generally greater in

amplitude and sharper than the peaks. Representative examples of such features can be

found at -0220 hours on swath 3 (Figure 4.7), and at -0315 hours on swath 5 (Figure

4.9). Because of their greater amplitude, these features will receive more weight in the

estimation of the covariance, and so enrich the small-scale/high wavenumber content. The

Gaussian synthetics cannot match this behavior for two reasons; 1) because phase is

uncorrelated from wavenumber to wavenumber, it is impossible to localize high

wavenumber content, and 2) because the Gaussian distribution is symmetric, we cannot

characterize asymmetries in the distribution such as that valleys are deeper and sharper than

peaks (or vice versa). It is possible in the Gaussian synthetics to change sign (turn the

page upside down) without affecting the stochastic character, whereas in the real data set

this creates a noticeable difference. To quantify such vertical asymmetries it is necessary to

include higher moments of the joint probability density function in the stochastic model.

It will also be necessary to appeal to higher moments to quantify lateral asymmetries

such as abyssal hill tilting. The clearest example of tilting can be found on swath 2 around

1900 hours (Figure 4.6) and swath 3 after 0500 hours (Figure 4.7). In both of these cases

the slopes facing the ridge are steeper than those facing away from the ridge. In other

examples it is difficult to tell by eye whether or not abyssal hills are tilted. In these cases,

quantitative estimation methods may help identify as well as measure tilting.

SEAMARC II DATA-SYNTHETIC COMPARISON

The time series Sea Beam data-synthetic comparison provides a useful means of

checking the accuracy of the stochastic estimation, especially with respect to the rms height,
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the azimuth of lineation, the abyssal hill widths, and the roughness (as represented by the

Hausdorff dimension). However, because of the limited Sea Beam swath width, it is very

difficult to compare the abyssal hill length characteristics. This is an important check

because the average length of an abyssal hill may prove to be an important parameter for

describing along-axis morphological and tectonic variations such as ridge crest

segmentation or average fault lengths. These variations may, in turn, reflect fundamental

differences in the crustal structure and distribution of magma chambers beneath a ridge

crest. To evaluate estimates of length characteristics properly, we must compare a full 2-D

synthetic field generated from the stochastic model with significant 2-D coverage of the

corresponding abyssal hill region used to estimate the parameters of the model.

The relatively narrow Sea Beam swath width (75% of the water depth, or -2.25 krn near

the EPR in the study area) has prevented many previous ridge surveys from covering

substantial areas of off-axis topography. Hence, there is not presently available a Sea

Beam data set for which we can make a full 2-D data-synthetic comparison. The SM-Il

bathymetric system provides substantially more swath coverage (-10 kin), than Sea Beam.

The MW8707 SM-IH cruise was thus able to obtain overlapping coverage of a large portion

of off-ridge topography (over 100 km, 70,000 km 2) on either side of the EPR crest

between 130 and 150 N. This off-ridge data provides us with the opportunity to make a

more complete 2-D data-synthetic comparison.

It is possible to adapt the multibeam inversion method to use with SM-Il data. Analysis

of the SM-U data could then provide a more complete picture of the stochastic make-up of

the region, and a direct comparison with the 2-D coverage. Unfortunately, the noise

characteristics of the SM-U bathymetry collected on the MW8707 cruise make it difficult to

use in stochastic estimation. An analysis of the characteristics of SM-II noise in the data

collected on the MW8707 cruise is presented in Appendix C. The sole purpose of this

analysis is to investigate the usefulness of this SM-II bathymetric data for use in

stochastically characterizing small-scale (< 10 kin) seafloor morphology. The results do
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not affect the well known usefulness of the SM-II system for quickly gathering great

amounts of large-scale bathymetry as well as simultaneous backscatter information. The

noise in the SM-II bathymetry data has two characteristics which inhibit use in stochastic

characterization: 1) the rms value of the noise is very large (especially on the port side) with

respect to abyssal hill relief, and 2) the noise has a significant correlation distance (i.e. its

covariance function has a width substantially greater than the first lag). The rms height of

the SM-I1 noise is found to range from 25 to 75 m (port and starboard). This range is

nearly identical to the range in abyssal hill rms heights estimated from Sea Beam data

(Table 4.2). The correlation distance is found to be -1 km. Since the topographic along-

track characteristic lengths are generally -2-5 km (at track azimuths -450 to the topographic

grain), it is nearly impossible to separate the effects of noise from the effects of topography

on the beam autocovariances. By comparison, the rms Sea Beam system noise is generally

less than 10 m for the swaths listed in Table 4.1, and the noise correlation width appears to

be at most I lag distance (-37 m), making it indistinguishable from a white noise process

whose covariance is a delta-function. Thus, Sea Beam noise significantly affects the beam

autocovariances only at zero lag (see Appendix C and Chapter 2), and its effect on the

covariance can be separated from that of the topography.

The primary strength of SM-II bathymetry is in providing substantial coverage of larger

features. Comparison of a large patch of SM-II bathymetry with synthetic topography

should thus be useful for assessing the ability of the model to characterize the overall shape

of abyssal hills, especially with respect to characteristic widths and lengths. But rather than

derive the model from the SM-I1 data, we use the Sea Beam lines which cross the SM-H

survey area for the parameter estimation. This provides an independent, if not quite direct,

data-synthetic comparison. Because of the correlated SM-II noise, we must restrict the

comparison to larger scales than for the Sea Beam comparison; i.e. to scales on the order of

many abyssal hills.
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In this section we make 3 comparisons using a northern, central and southern section of

the SM-11 survey area. These sections are outlined in Figure 4.4. The sections are all near

the ridge, and include a portion of the ridge axis. Sea Beam swaths 1, 2, and 4 were used

to estimate model parameters for the generation of synthetic topography for comparison

with the sections which each passes through. A square root of age subsidence curve

[Parsons and Sclater, 19771 was added to each of the synthetic topographies to improve the

comparison. For presentation, the SM-I bathymetric data were gridded at 50 m intervals.

To reduce the effects of noise, the gridded data were then averaged over 4 x 4 boxes and

plotted at 200 m pixel resolution. The synthetic data were generated and plotted at the same

resolution Both the SM-Il data sections and synthetic topography are plotted as grey-

shaded, color-contoured images. The artificial illumination angle is always from the north-

west to best highlight the abyssal hill fabric while minimizing the along-track SM-II

artifacts.

The Southern Section

We begin with our most favorable comparison (the southern section) and proceed to less

favorable comparisons (the central and northern sections). The data-synthetic comparison

for the southern section is shown in Figure 4.11. The data contains artifacts, most notably

the lack of side-scan data directly beneath the ship and noisy bands associated with half-

power transmitters on the port side (now replaced), which make it difficult for the eye to

attune to the abyssal hill fabric. Nevertheless, with some squinting and mental filtering, it

can be done.

Our initial evaluation of the comparison is quite favorable; the low-order stochastic

character of the synthetic (rms height, azimuth of lineation, characteristic widths and

lengths) matches that of the real data fairly well. It is also encouraging that the stochastic

character of the bathymetric data appears to be fairly consistent (i.e. roughly stationary)

over the region shown, suggesting that changes in stochastic character are gradual and that



113

the character of large regions can be estimated from small bathymetric samples. An

important litmus test to consider is the character of abyssal hill widths. Since the

characteristic widths were found to be well-matched by the synthetics in the Sea Beam data-

synthetic comparison (Figure 4.8), we should expect the same result for the SM-Il

comparison. In this way Sea Beam can serve as a stochastic groung-truthing tool for the

less-accurate SM-II data. In Figure 4.11 it does appear that abyssal widths compare

favorably. We thus have some measure of confidence in the SM-H data and the validity of

this comparison.

Close inspection of the length characteristics reveals a moderate but important

discrepancy between the stochastic model and the data. Although it is difficult to trace

abyssal hills across swaths, it is fairly clear that on the SM-II data they are more linearly

bounded than the synthetic Gaussian hills with aspect ratio of 6.1. The comparison is

improved by increasing the abyssal hill lengths. The second synthetic topography shown

in Figure 4.11 was generated from the same parameters as the first with the exception of

X,, which was increased by a factor of 25% (approximately the limit of the 1-orerror). The

altered synthetic is clearly an improvement; the edges of the abyssal hills are more linear

and the comparison to the data is fairly good. Increasing the abyssal hill lengths by 50% of

the estimated value (the third synthetic in Figure 4.11) appears to further improve the

comparison. It is therefore likely that in this region the characteristic length is

underestimated by the inversion of Sea Beam data.

The most likely causes for underestimating the value of A4 involve errors in the modeling

assumptions. To properly assess the contribution each possible assumption error will

require further study. Our preferred explanation is that the covariance function is under-

parameterized. In particular, the characteristic length can be underestimated if the aspect

ratio is smaller at the scale of the Sea Beam swath width than at the scale of the

characterirtic length. The current parameterization of the covariance function does not

allow for any dependence on scale. A change in aspect ratio with scale could be the result
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of scale-defined processes acting on the formation of abyssal hills. For example, it is

possible that normal surface faulting, creating steep linear scarps with a high degree of

anisotropy, is the most influential process forming the abyssal hills at the scales which are

evident to the eye in Figure 4.11. At smaller scales (e.g. the width of a Sea Beam swath),

constructional volcanism and/or pit collapse, with a probable lesser degree of anisotropy,

may be an important influence on the along-strike variation in abyssal hill morphology.

This is consistent with deep-tow observations made by Bicknell et al. [ 19871 near the EPR

at 19' 30' S that volcanic structural relief generally consists of shorter-wavelength features

superimposed on the dominant faulted structure. Increasing the parameterization of the

covariance model may enable it to characterize the separate contributions of each of these

processes. To test such models, however, we will need extensive 2-D high-resolution

coverage of abyssal hill morphology as well as better physical understanding of the

processes acting on the formation of oceanic crust.

Central and Northern Sections

The data-synthetic comparisons for the central and northern sections are both shown in

Figure 4.12. For the central section, we used data to the west of the ridge rather than to the

east (where swath 2 is located) because swath 2 passed near several large seamounts,

which overprint and obscure the surrounding abyssal hill fabric. The central and northern

comparisons are considered together because the conclusion regarding them is the same: the

SM-II bathymetric data collected on the MW8707 cruise are insufficient to capture the

stochastic abyssal hill character in this region. Neither of the comparisons in Figure 4.12

pass the litmus test; i.e. the abyssal hill widths displayed by the SM-II data are

considerably broader than those displayed by the synthetic image. Since the Sea Beam

data-synthetic comparisons (Figures 4.5 and 4.6) were favorable with respect to abyssal

hill widths, we conclude that the problem lies with the SM-Il data.
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Given the characteristics of SM-II noise discussed earlier, this is not a surprising

conclusion. The characteristic widths are short in these two sections (1.8 ± 0.43 km for

the central section and 1.2 ± 0.32 km for the northern), not much larger than the noise

correlation width (-1 kin). If noise has a correlation width of 1 km, it is reasonable to

assume that the response of the SM-II system in this survey averages the seafloor in some

fashion over an area -1 km wide. Furthermore, if the response is similar to a first arrival

echosounder, or if the signal is dominated by strong scatterers, then the averaging effects

will be intensified in regions of high relief. The differences between the rms height and

characteristic width in the southern region (H = 44 ± 3 m, An = 2.3 ± 0.51 km) and those

in the central (H = 68 ± 5 m, An = 1.8 ± 0.43 km) and northern (H = 72 ± 6 m, An = 1.2 ±

0.32 m) regions may be critical in determining whether or not SM-il bathymetric data can

be used to accurately portray abyssal hills.

GEOLOGIC CORRELATIONS WITH STOCHASTIC PARAMETERS

The estimated stochastic parameters listed in Table 4.2 represent a quantitative

characterization of the abyssal hills near the ridge crest between 130 and 15' N. To form a

basis on which these parameters can be interpreted geologically we must first establish

empirical correlations between the parameters and geological variables such as spreading

rate and direction, ridge morphology, magma supply, etc.

The lineation azimuths shown in Table 4.2 all appear to be well resolved (errors are

generally ± 1" or ± 2*). However, these errors are evaluated with respect to ship direction

only, and do not include uncertainties in ship navigation. Errors in ship direction are

probably on the order of ± 2* or ± 30 so that the resolution of C, for these swaths is likely to

range from ± 3 to ± 5*. Within these errors, the near ridge swaths (swaths 1-4) have

abyssal hill lineations which are parallel to the trend of the EPR in this region (-349*). The

lineation azimuths estimated from the off-ridge swaths on the Papatua I track line (swaths 5
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and 6) are somewhat more northerly, which is consistent with the change in trend of

magnetic lineations [Klitgord and Mammerickx, 19821. The azimuth of 3560 ± 10 estimated

from swath 5 (located just inside the western propagator pseudofault) may, however, be

slightly greater than expected. Though not nearly as pronounced, this difference in

expected strike is similar to the change in orientation of abyssal fabric noted by Kleinrock

and Hey [1989] for topography just inside the outer pseudofaults of the Galapagos 95.5* W

propagator.

The remaining three parameters show considerable variation and may contain useful new

information about ridge tectonics in this region. In Figure 4.4 the estimated values for H,

L,, and A, are shown next to the respective swaths. Plotted in this way the stochastic

parameters can be compared with the regional morphology. The near-ridge swaths (swaths

1-4) provide a chance to correlate quantitative seafloor character with observed ridge

morphology. The change in stochastic parameters from north to south appears to be well-

correlated with the change in ridge crest complexity over the same region. This is clearest

for the rms height; the variation of topography about the mean depth is greatest in the north

(72 ± 6 m) where the ridge complexity is greatest, and monotonically decreases southward

to 44 ± 3 m at the southern end of the SM-II survey area where the ridge crest is defined by

a simple, broad and well-defined crestal horst. The characteristic abyssal hill lengths and

widths also appear to be correlated with ridge complexity: both length and width are

shortest for the northernmost swath and generally increase southward with decreasing ridge

crest complexity.

The seafloor recorded by the long Papatua 1 swath (Figure 4.1), extending over 200 km

west of the ridge crest, provides information which suggests temporal variations in

accretion-related tectonics and volcanism. The three Papatua swaths show significant

variation in the three estimated parameters H, ,. and 4,. As with the northernmost swath

(swath 1), the swath just east of the western propagator pseudofault (swath 5) represents

seafloor generated immediately after passage of the propagator. The characteristic length
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and width of abyssal hills mapped by these two swaths are similar (8.8 ± 1.7 km and 1.2±

0.22 km for swath 5 compared with 7.4 ± 1.6 km and 1.2 ± 0.32 km for swath 1) and in

all cases shorter than estimated for all other swaths in this region (though the differences in

characteristic length are not well resolved). The rms height for swath 5 (54 ± 2 m) is

greater than the near-ridge crest data (44 ± 3 m) at the same latitude, though not as large as

the northern data (72 ± 6 m).

To the west of the pseudofault is seafloor that was produced before the propagator

disturbed this area. This topography has the lowest average relief (31 ± 2 m) of all the

swaths. The characteristic abyssal hill widths in this region (2.4 ± 0.64 km) are similar to

those near the ridge crest (2.3 ± 0.51 km) at the same latitude, but the abyssal hill lengths

(9.8 ± 3.0 km) are shorter than those near the ridge crest (14.1 ± 3.5 km). The length

difference AA, = 4.3 km is not resolved, however, given the standard deviation qa;., =

4(al2 + a22) = 4.6 km. Both the rms height and the characteristic abyssal hill widths

estimated from swath 6 are resolvably different from those estimated from swath 5, just on

the other side of the propagator pseudofault.

From the parameters shown in Figure 4.4 for swaths 4, 5, and 6, it is clear that the

character of the abyssal hills has changed over time. It appears that we can correlate a

significant change (from swath 5 to swath 6) with the time when the propagator traversed

this area. It also appears that abyssal hills generated after passage of the propagator in one

locale (swath 5) are stochastically similar to those in another locale (swath 1). We therefore

hypothesize that the propagator significantly altered the accretionary processes for a

substantial enough time after its passage to affect the formation of abyssal hill for 10's of

characteristic widths (i.e. enough to measurably alter the statistics of a Sea Beam swath 30-

50 km long). Since the morphology of the ridge crest may also be correlated to the

flanking abyssal hill character, we also infer that the degree of morphological complexity of

the ridge crest and its attendant weakness in magma supply may also depend at least in part

on the time since passage of the propagating ridge tip.
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CONCLUSIONS AND DISCUSSION

The second-order stochastic model for the seafloor and the Sea Beam inversion

procedure provide good initial means of quantitatively describing the low-order

characteristics of the seafloor. This description provides estimates of physical

characteristics of abyssal hill morphology, including rms height, azimuth of lineation,

characteristic lengths and widths, aspect ratio, and Hausdorff dimension. The Sea Beam

data-synthetic comparisons indicate that we are generally successful in estimating rms

height, lineation direction, and characteristic abyssal hill idths. The comparisons also

indicate the need to include a description of higher order moments in the stochastic

characterization to detect and quantify abyssal hill asymmetries and peakiness. The SM-Il

data-synthetic comparison for the southern section (Figure 4.11) suggests that, at the scale

plotted for this comparison, the inversion underestimates the characteristic abyssal hill

length. This discrepancy may be due to under-parameterization of the covariance function

description of topography. A more realistic covariance model may need to include the

variation of anisotropy with scale. The northern SM-II data-synthetic comparisons (Figure

4.12) indicate more about the limitations of SM-II data than about the stochastic modeling.

It has been proposed that abyssal hills in fast spreading regions are formed primarily by

ridge-parallel normal faulting [Bicknell et al., 1987; Pockalny, et al., 19891. It is therefore

a potentially useful exercise to interpret the stochastic properties of abyssal hill in terms of

the faulting process alone. For example, the characteristic abyssal hill width may be related

to the average spacing of large offset faults. The rms height may be related to the amount

of offset on the faults, and the length may be related to the average length of the surface

breaking faults (or the coherence of faulting along-strike). If faulting characteristics can

also be related to the ridge characteristics, information concerning the lengths of abyssal

hills may provide insight into the along-strike variation in ridge morphology. There is
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much ground-truthing work to be done, however, before these relationships can be made

quantitative, if such relationships can, in fact, be defined.

If faulting is the principal abyssal hill forming process in this region at the scale of

characteristic abyssal hill widths and lengths, it is possible that at smaller scales

constructional volcanism plays a more important role, decreasing the degree of anisotropy

with decreasing feature scale. It is difficult with the present data sets to determine what the

influence of each abyssal hill forming process is at different scales. As we stated

previously, constructional volcanism may have an important effect in this region at the scale

of a Sea Beam swath width (-2.25 km). In other regions, such as the north Atlantic

[Pockalny, et al., 1989] and the Juan de Fuca ridge [Kappel and Ryan, 1986],

constructional volcanism may the the principal abyssal hill forming process. We should

expect that with varying spatial and temporal tectonic factors (e.g. magma supply,

episodicity and flow type, or presence or absence of an axial valley), the relative

contributions of tectonism and volcanism to the formation of abyssal hills should also vary.

Data with greater spatial resolution than either Sea Beam or SM-Il data, applicable over a

wide range of scales, will be needed to perform an adequate study of the variation in

stochastic characteristics with scale.

The stochastic parameters derived from the inversion (Table 4.2, Figure 4.4) change

significantly from one swath to the next. We can make the following initial correlations

with the observed morphological structures in the region. The ridge has been shown to be

complex and ill-defined in the northern half of the SM-il survey area. South of 140 N, the

ridge crest is characterized by a single, well-developed high which broadens to the south.

The near-axis stochastic character of the abyssal hills undergoes a corresponding change

from north to south. In the north the abyssal hills have large average relief (72 ±6 m) and

short length (7.4 ± 1.6 kin) and width (1.2 ± 0.32 km) (swath 1). In the southern portion

of the survey area, the relief monotonically decreases to 44 ± 3 m and the characteristic
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length and width generally increase to 14.1 ± 3.5 km and 2.3 ± 0.51 km respectively at the

southernmost swath (swath 4).

With the long east-west Papatua I track line (Figure 4.1) we can correlate changes in

stochastic character with temporal changes in ridge activity. A change in abyssal hill

morphology apparently coincided with the passage of the propagating rift. Before the

propagator (swath 6), the abyssal hills formed with low average relief (31 ± 2 m) and (by

the standards of the region) fairly wide characteristic widths (2.4 ± 0.64 km) and moderate

lengths (9.8 ± 3.0 kin). After the propagator (swath 5), relief increased to 54 ± 2 m, the

characteristic widths decreased to 1.2 ± 0.22 kin, and the lengths decreased to 8.8 ± 1.7

km (although the change in length is not well resolved). Near present (swath 4), the relief

has decreased back down to 44 3 m, the widths have increased to 2.3 ± 0.51 kin, and the

lengths have increased to 14.1 ± 3.5 km. The first post-propagator swath (swath 5) is

similar in temporal/spatial proximity to the propagator as the far northern swath (swath 1).

Characteristic lengths and widths estimated from the two swaths are also similar, though

their rms heights differ significantly.

These correlations suggest a scenario for the SM-I survey region in which, as the

propagator tip passes, it leaves in its wake a complex ridge with associated abyssal hill

faulting which is more frequent (shorter characteristic width), produces higher relief, and is

less coherent along the length of the ridge (shorter characteristic lengths) than the abyssal

hills generated before the propagator. In time the ridge settles down to its previous,

simpler state with a clearly defined crestal horst, and producing wider and lowe abyssal

hills which are more coherent along-strike. From the southern SM-II data-synthetic

comparison it appears that the abyssal hills are longer than estimated by the Sea Beam data

alone. This should also be the case for the estimates from westernmost Papatua I swath

(swath 6). Since the average relief is lower in this case, the effects of a decrease in

anisotropy with decreased scale on biasing the estimation of X should be greater. Thus the

topography shown in swath 6 (Figure 4.10) may represent the steady state toward which
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the abyssal hill forming processes are headed after being disturbed by the passage of the

propagator.

From the increase in the rms height across the propagator and from the decrease in relief

from north to south, it appears clear that the topographic relief has been influenced by the

time since passage of the propagator. However, just how much an effect it has had is

uncertain. The relief estimated from swath 5, just east of the propagator in the south, is

significantly less than for the two northern swaths (swaths 1 and 2), which are respectively

the same distance as and farther from the propagator than swath 5. It appears that more

than just the propagator has influenced the rms height; perhaps proximity to the Orozco

Fracture Zone is also an important factor in determining this parameter.

If the complex, deep ridge crest in the north of the SM-II survey area characteristically

,-oduces relatively high relief and short length and width abyssal hill morphology, then we

may, in turn, associate such abyssal hill morphology with the weakness in magma supply

attributed to such ridge crest type. The further possible association of this type of abyssal

hill morphology with the recent propagation of the ridge consequently prompts us to

hypothesize that a weak magma supply is also associated with recent ridge propagation.

This series of relationships is tenuous at best and requires further data to substantiate.

However, the hypothesis they suggest is certainly reasonable since it should take time to set

up a steady-state magma chamber and well-developed plumbing system for a new rift.

This hypothesis was earlier forwarded by Christie and Sinton [1981; 1986] and Sinton et

al. [ 19831 on the basis of variations in crystal fractionation throughout the evolution of the

Galapagos 95.50 W propagator. It is also consistent with the tectonic model proposed by

Kleinrock and Hey [1989] for the evolution of the same propagator. In their model,

volcanism does not begin until 6.5 km behind the tectonic initiation of the propagating rift.

Volcanism, furthermore, does not become localized into a neovolcanic zone until 4.5 km

beyond the initiation of volcanism and the full rate of spreading is not reached until 10 km

beyond the neovolcanic tip, -21 km beyond the initial rift. Given the rate of propagation of
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-52 km/my [Kleinrock and Hey, 19891, this translates to -0.4 my after rift initiation.

Although the dynamics of a slow spreading ridge propagator may be substantially different

than for a fast one, the implication of this model is that magma supply slowly increases and

becomes more organized with increase in age since passage of the propagator tip. The

propagation velocity for the propagator in the vicinity of 13'- 150 N is approximately 108

km/my [Madsen et al., 1990]. Application of Kleinrock and Hey's [1989] model to the

13° - 150 N propagator in terms of time since propagation suggests that we might not expect

to see the ridge crest dynamics return to normal until at least 50 km south of the crack tip.

However, for the 130- 15° N propagator, the crestal horst does not become clearly defined

until -14 ° N, 100 km south of the propagator tip. This may imply that the faster spreading-

rate propagator requires more time to organize into a stable rift system than does the slower

spreading-rate propagator, or, again, that proximity to the Orozco Fracture Zone also has

an important influence on the formation of abyssal hills.
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Figure 4.1. Map of the SM-II survey region showing the location of the East Pacific
Rise (EPR), the Orozco Fracture Zone (OFZ), and the propagator pseudofault (PPF). Also
shown are the track lines of the Sea Beam data considered in this paper from cruises
Papatua I (PI) and Ceres 2 (C2) on the RV Thomas Washington and RC2607 (RC) on the
RV Robert Conrad.
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Figure 4.2. Four examples of Sea Beam data crossing the East Pacific Rise within the
SM-I survey area. The depth recorded by each beam is plotted separately. The beam
spacing for each swath varies as a function of beam angle, but averages to approximately
145 m in each case. Top panel: from the Ceres 2 cruise of the RV Thomas Washington
near 14.80 N. The average along-track data spacing is 58 m. Second panel: from the Ceres
2 cruise of the RV Thomas Washington near 14.00 N. The average along-track data
spacing is 49 m. Third panel: from the RC2607 cruise of the RVRobert Conrad near 13.40
N. The average along-track data spacing is 16 m. Bottom panel: from the Papatua I cruise
of the RV Thomas Washington near 13.2* N. The average along-track data spacing is 36
m.
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Figure 4.3. Sea Beam data from the Papatua 1 cruise of the RV Thomas Washington
(See Figure 4. 1) crossing the propagator pseudofault - 120 krn west of the EPR near 13.10*
N. The depth recorded by each beam is plotted separately. The average along-track data
spacing is 36 in and the average beamn spacing is 155 in.
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Figure 4.4. Map of the SM-II survey area showing swaths 1-6 used for the estimation
of stochastic parameters. The estimated values of H, A and As are listed next to each
swath. Also shown are the outlines of the three SM-II sections used for data-synthetic
comparisons in Figures 4.11 and 4.12.
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Figure 4.5. Comparison of Sea Beam data from swath I (Table 4.1, Figure 4.4) with
synthetic data generated from the covariance parameters estimated from an inversion of this
data set (Table 4.2). Appropriate Sea Beam noise and response were applied to the
synthetic data set and both data and synthetic have been averaged over 5 pings. The depth
recorded by each beam is plotted separately.
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Figure 4.7. Data-Synthetic comparison for swath 3. See Figure 4.5 for further details.
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Figure 4. 10. Data-Synthetic comparison for swath 6. See Figure 4.5 for further details.



* Figure 4.11. Companson of grey-shaded color relief images of SM-1I bathymetry data
from the southern section (Figure 4.4) to a synthetic surface generated from the covariance

* [UXiCl. The SM-Il data, originally gridded at 50 m spacing, has been averaged over 4 x 4

boxes and plotted at 200 m pixel spacing. The synthetic topography was also generated at

200 ni spacing. The parameters used to generate the first synthetic surface (upper right

panel) were estimated from the inversion of swath 4 (Table 4.2). The Papatua I swath,

from which svath 4 was taken, is shown on the data image in white. The second two

synthetic surfaces were generated using the same parameters as the first with the exception
of . oiginally 14.1 ± 3.5 ki), which was increased by 25% (lower left panel) and 50%

(lower right panel). Square root of age curves have also been added to the synthetics to

simulatC detcnviinistic ridge morphology. Both surfaces are artificially illuminated from a

IMsun azimuth of 45'. This angle emphasizes abyssal hill texture while minimizing SM-lI

swath effects. Best Avaable COP
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Figure 4. 12. (mipari son of grey-shaded color relief images of SM-Il bathymetry data
from the northern secti on (Figure 4.4) (upper two panels) and the central section (Figure
4.4) (lower two panels) to synthetic surfaces generated from the covariance model. The

- paramctcrs used to generate the synthetic surfaces were estimated from an inversion of
swath I (Table 4.2) for the northern section and from an inversion of swath 2 for the
central sect ion. See Figure 4. 11 f(r more details. Best Available Copy



139

CHAPTER 5

A GLOBAL AND REGIONAL ANALYSIS OF NEAR-RIDGE ABYSSAL HILL MORPHOLOGY

INTRODUCTION

The second-order stochastic model and parameter estimation methodology introduced in

Chapter 2 provides a valuable new tool for the investigation of morphological processes

which form and reshape abyssal hills. In the previous chapter we made use of this tool to

perhaps gain some new insight into the time-dependent effects of a propagating rift on ridge

processes. A cornerstone of this study was our ability to characterize the ridge and near-

ridge morphology in order to interpret abyssal hill statistics away from the ridge. The

current relationship between ridge and abyssal hill characteristics will be important in any

study which involves the characterization of abyssal hills far enough away from the ridge

so that either the processes forming abyssal hills have changed or secondary processes

(e.g. sedimentation, mass wasting, or off-axis volcanism) have significantly altered their

morphology. Without these relationships as a reference, interpretation is difficult if not

impossible.

We have compiled a data set of 64 near-ridge Sea Beam swaths (Table 5.1, Figures 5.1-

5.3) to characterize near ridge abyssal hill morphology and its relationship to ridge

properties. These data are gleaned from available Sea Beam records, and so in general do

not comprise a very coherent or uniform sampling of the world's ridge system. Much of

the data (27 swaths) comes from cruises to the Pacific-Cocos spreading section of the East

Pacific Rise between 90 and 15' N. These data provide very good abyssal hill coverage of

this well-mapped and studied ridge section and form the basis of a regional analysis of the

correlation between ridge morphology and stochastic abyssal hill parameters. We also have
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data from near the Rivera (9) and Nazca (7) spreading sections of the East Pacific Rise, the

Mid-Atlantic Ridge (18), and the SW Indian Ridge (3). Though spotty, this constitutes a

good initial global data set for the analysis of correlations among covariance parameters and

between parameters and ridge characteristics, especially spreading rate.

THE FORMATION OF ABYSSAL HILLS

Abyssal hills form primarily through a complex combination of tectonic (surface

faulting) and constructional (volcanic) processes which occur at or near the ridge axis.

Several studies have ventured to track to one degree or another the formation of surface

morphology from the moment of rifting to the cessation of tectonic and volcanic activity

along the flanks of the ridge. These include studies along the Rivera [Lewis, 1979;

CYAMEX, 1981; Macdonald and Luyendyk, 1985], Cocos [Choukrone et al., 1984] and

Nazca [Lonsdale, 1977; Searle, 1984; Renard et al., 1985; Bicknell et al., 1987] spreading

sections of the East Pacific Rise and portions of the northern Mid-Atlantic Ridge [Needam

and Francheteau, 1974; Harrison and Stieltjes, 1977; Macdonald and Luyendyk, 1977;

Macdonald and Atwater, 1978; Kong et al., 19881.

Based on submersible observations along the Rivera spreading section of the East

Pacific Rise a generic series of stages for the formation of abyssal hills was developed by

CYAMEX [1981] and modified by Macdonald and Luyendyk [1985] (Figure 5.4). These

include: (1) ridge axis volcanism, including flood basalts and edifice formation, (2)

fissuring and horst and graben formation, with no polarization in faulting direction, (3)

polarized normal faulting with larger inward facing faults driven by necking of the

lithosphere [Tapponnier and Francheteau, 1978; Phipps-Morgan et al., 19871, and leading

to the formation of a rift valley, and finally (4) the inactive zone, where abyssal hill

construction has ceased, and their morphology is slowly modified by mass-wasting,

sedimentation, and occasional off-axis volcanism. These volcanic and structural zones are
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also observed along the Mid-Atlantic Ridge [CYAMEX, 1981]. The principle

morphological differences between the slow (e.g. Mid-Atlantic Ridge) and medium (e.g.

Pacific-Rivera Ridge) spreading are (1) that the zone volcanism is almost always expressed

as edifice formation in the former, often to the size of flanking abyssal hills [CYAMEX,

1981 and references therein; Kong et al., 1988], as opposed to a mixture of edifice and

flood basalts in the latter, and (2) polarized faulting is much larger at the slower spreading

ridge, creating rift valleys over 1 km deep and up to 30 km wide [Needham and

Francheteau, 1974]. The rift valley at the medium-rate spreading ridge, by contrast, has

only 50-200 m of relief [Macdonald, 1982], on the order of the size of flanking abyssal

hills.

Harrison and Stieltjes [ 1977] and Macdonald and Atwater [1978] argue that there must

be an additional tectonic zone (noted as phase 3b on Figure 5.4) for the slow-spreading

ridge; as the seafloor is rafted over the top of the rift mountains, it changes from sloping,

on average, steeply upward to slightly downward. To accommodate this transition either

one or more of the following must occur: back tilting of the faulted blocks, reverse faulting

on relict normal faults, or the formation of outward facing normal faults. In the medium-

rate spreading ridge, there is no large-scale change in the average slope. The rift mountains

(or hills) can be rafted away, without additional back-tilting, to take their place among

abyssal hills, and a new rift mountain is formed by one or two new inward facing faults.

For both medium and slow spreading ridges, the locus of volcanic activity is generally

discontinuous, implying that the magma supply feeding the ridge volcanism is erratic, or

episodic, and that magma chambers, if they exist, are transient and spatially discontinuous.

[Macdonald and Luyendyk, 1977; Macdonald and Luyendyk, 1985; Kong et al., 1988].

Fast spreading ridges apparently undergo only the first two of the abyssal hill forming

stages (Figure 5.4). Rather than a rift valley, the plate boundary is marked by a ridge crest

which is likely an isostatic response to a buoyant, steady-state magma chamber and zone of

partial melt in the upper mantle beneath the rift [Madsen et al., 1984]. The large volume of
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flood basalts erupting from the rift create a morphology akin to a linear shield volcano

[Lonsdale, 1977]. The locus of volcanic activity is generally continuous within a spreading

section [Lonsdale, 1977], implying that the magma supply is predominantly steady state,

though subject to temporal and spatial variations in intensity [Macdonald and Fox, 19881.

The lid of the magma chamber beneath fast-spreading ridges is approximately 1.2-2.4

km deep and 4-6 km wide [Detrick et al., 1987]. Because of a thin brittle layer atop the

magma chamber, it is difficult to establish large relief in the beginning stages of fissuring

and horst and graben formation. Large-scale horst and graben formation, leading to the full

size of abyssal hills, is observed to begin, often abruptly, 2-10 km from the ridge crest

[Lonsdale, 1977; Choukrone et al., 1984, Bicknell et al., 1987] (labeled as phase 2b in

Figure 5.4). Lonsdale [1977] attributed this onset to the end of the subaxial magma

chamber. Lister [1977] also postulated that with the transition between magma chamber

and deep brittle crust comes a sudden onslaught of hydrothermal penetration, perhaps

sufficiently cooling the upper crust to initiate large extensional structures.

By measuring cumulative throw on faults, Bicknell et al. [1987] found that there was a

preference for inward facing faults on the flanks of the East Pacific Rise at 190 30' S.

Assuming that lithospheric necking (i.e. rift valley formation) is not significant in the faster

spreading regions, they forward the suggestion, made earlier by Tapponnier and

Francheteau [19781 and Searle [1984], that inward facing faults rupture a thinner brittle

layer, and so require less energy to form. This hypothesis will be discussed in chapter 6

when we investigate asymmetries in abyssal hill morphology.

Figure 5.5 presents a summary of the several proposed mechanisms which may

contribute to abyssal hill formation. One of the primary goals of the global study is to

assess the relative contribution of each at various spreading rates in light of previous work

on the subject. Much of this work strongly suggests that we can expect considerably larger

abyssal hill features on the flanks of slower spreading ridges than near faster spreading

ridges. Large differences in temperature profiles [Phipps-Morgan et al., 1987] indicate that
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the lithosphere immediately adjacent to the rift axis of a slow spreading ridge will have

greater elastic thickness [McNutt, 1984] than the lithosphere adjacent to the axis of a fast

spreading ridge. Consequently, we can expect that abyssal hills, which at scale lengths

less than 100 km are elastically supported loads [Black and Mcadoo, 1988], may obtain

much larger sizes in slower spreading regions. Differences in the size distribution of

microearthquakes [Ouchi et al., 1982 (East Pacific Rise); Toomey et al., 1988 (Mid-

Atlantic Ridge)] and teleseismic centroid depths [Huang and Solomon, 1988] indicate that

the brittle failure zone extends much deeper at slower spreading ridges. Larger fault

offsets, and thus larger features associated with faulting, can therefore be generated

adjacent to slower spreading ridges. Also, the difference in style of extruded volcanics

(pillow lavas at slow spreading ridges vs. flood basalts at fast spreading ridges)

[CYAMEX, 1981] favors the formation of taller volcanic edifices at slow spreading ridges.

At fast spreading rates we would like to establish whether volcanic construction or

surface tectonism by means of horst and graben formation is predominate. Lonsdale

[1977] interpreted a deep-tow profile taken across the East Pacific Rise at 3' 25' S almost

entirely as faulted in origin. Bicknell et al. [1987] did the same for profiles at 190 30' S,

stating that the intermediate wavelength (2-8 km) topography off-axis has a faulted origin

while the short wavelength topography (a few hundred meters) has a volcanic origin.

At slow spreading ridges, either volcanic edifice formation and tectonic processes

resulting from lithospheric extension may dominate the formation of abyssal hills. From a

study of abyssal hills east of the Mid-Atlantic Ridge near 230 N, Rona et al. [1974]

concluded that both volcanic and tectonic processes play an important role. Kong et al.

[1987] observed that a large volcanic edifice formed in the rift valley near 230 N was similar

in size and shape to abyssal hill structures off axis, and thus proposed that abyssal hills in

this region are extinct volcanic edifices which have been rafted away. However, before a

volcanic edifice can be rafted away, it must pass over the rift mountains, and in the process

be subjected to severe normal faulting with individual fault throws on the order of hundreds
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of meters [Macdonald and Luyendyk, 1977]. On the other hand, Macdonald and

Luyendyk [19771 found that faults preferentially formed along the edges of volcanic

edifices, so that it is perhaps possible to preserve volcanic constructs to a large degree as

they are transported over the rift mountains. It is, however, not very clear from these

studies whether we can expect either processes to dominate the formation of abyssal hills in

slow spreading regions.

On the regional scale we expect to address more detailed questions concerning the ridge

crest processes which influence abyssal hill formation. For example, how might abyssal

hill formation be affected by regional variations in magma supply, proximity to small or

large offset transforms, or small deviations in the stress fields from what might be expected

adjacent to a linear (or idealized) ridge? We expect that important clues to answering these

questions will be provided by establishing well-resolved correlations between quantitative

abyssal hill characteristics and salient ridge parameters or features.

GLOBAL ANALYSIS

The stochastic parameters estimated from the near-ridge Sea Beam swaths (Table 5.1)

are listed in Table 5.2. These form the basis of both the global and regional analysis of

near-ridge morphology. Since this is the first time this type of analysis has been

performed, much of what we do here is purely exploratory. There are a myriad of ways

that the estimated parameters can be plotted. Some are enlightening, some curious, and

others confusing. There are two general methods of plotting that we will pursue in the

global analysis. The first is to plot parameters as a function of other parameters to

investigate general aspects of abyssal hill characteristics. The second is to plot individual

parameters versus the spreading rate of the nearby ridge to investigate the dependence of

the parameters on first-order ridge characteristics. To highlight regional variations in both

types of plots, different symbols are used to indicate different spreading regions.
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Inter-Paramerer Correlations

Characteristic abyssal hill widths (A,,) are plotted versus corresponding rms height (H)

in Figure 5.6. The overall trend is what we might expect on the basis of physical

arguments: as the height of abyssal hills increases, so does their girth. If, however, we

restrict attention to the Pacific-Cocos data, which dominates the lower end of both axes,

then this trend is reversed. We quantify these trends by a weighted least-squares inversion

for the best-fitting linear trend. The best-fitting slope to the Pacific-Cocos data is b =

-0.021 ± .010, and for the rest of the data b = 0.0164 ± 0.002. The implications of this

are, perhaps, that there are at least two major processes which dominate the formation of

abyssal hills at different scales; one which at the larger scales produces a positive

correlation between An and H, and one at smaller scales which produces a negative

correlation between An and H. This view differs with that of others [e.g. Searle, 1984]

who contend that the process of abyssal hill formation is essentially the same regardless of

spreading rate.

Abyssal hill aspect ratios (a), or average length-to-width ratios, are plotted versus

corresponding rms height (H) in Figure 5.7. This figure also displays a difference between

the behavior of the smaller-scale Pacific-Cocos data and the rest of the global data set.

While the Pacific-Cocos data show a large increase in a from -3 at H = 30 m to -6-16 at H

= 80 m (estimated slope b = 0.76 ± 0.29), the rest of the data are nearly constant at

approximately a = 1.5-4 (estimated slope b = 0.003 ± 0.002). As with Figure 5.6, this

figure suggests that smaller-scale abyssal hills are formed by a very different process than

larger-scale abyssal hills. A plot of the aspect ratio versus characteristic width shows much

the same thing (Figure 5.8). In this plot there is a general monotonic decay in a with

increasing An,. The Pacific-Cocos data aspect ratios are larger in general, and exhibit a

much steeper negative correlation with An (b = -14.3 ± 10.4) than the rest of the data (b =

-0.14 ± 0.06).
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For the sake of completeness we have also included a plot of characteristic lengths (A.s)

versus the corresponding characteristic width (,) (Figure 5.9). This plot contains the

same information as in Figure 5.8, but in this format it is more difficult to interpret. As

expected, there is a general positive correlation between the width and length of abyssal

hills. Close inspection reveals that the Pacific-Cocos data tends to follow a steeper gradient

than the remaining data, indicating, as before, that they tend to have greater aspect ratios.

Spreading Rate Correlations

The rms abyssal hill height (H), characteristic width (X,), length (Xs), and aspect ratio

(a) are plotted versus spreading rate in Figures 5.10, 5.11, 5.12, and 5.13 respectively.

From these plots we observe that the tallest, widest, longest and least anisotropic abyssal

hills are found at some of the slowest spreading rates. Although coverage is spotty, it

appears that H, 4n, and perhaps Xs tend to decrease and a tends to increase with increased

spreading rate up to the Pacific-Cocos data. The results from the Pacific-Nazca data, at

some of the fastest observed spreading rates in the world, bear more resemblance in each of

these plots to the medium spreading rate Pacific-Rivera data than to the Pacific-Cocos data.

The variation in estimates of H, 4, and As is also much greater at lower spreading rates

than elsewhere. This indicates that the process of abyssal hill formation is much more

complex, variable, and/or episodic in the slower-spreading regions. The absolute variation

of a is greatest for the Pacific-Cocos data, but the relative variation is fairly constant

throughout.

In Figure 5.14 we have plotted the difference ALs between the abyssal hill lineation

azimuths (Cs) and the normal to the RM2 [Minster and Jordan, 1978] spreading direction.

A4s' thus provides some measure of the relative anomaly in s. At this point we do not

wish to draw attention to any particular values of A4s (some values, such as the Pacific-

Rivera and African-Indian data are likely primarily due to errors in assumed spreading

direction), but rather simply to the large variation in values among separate spreading
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sections, especially in the Pacific-Cocos data where C, is best resolved. This indicates that

abyssal hill lineations are subject to significant perturbation from the ridge strike and/or

plate-motion normal directions, and may yield important physical information. The content

of such information is probably best understood, however, in the regional analysis.

The final figure in this section plots the Hausdorff, or fractal dimension (D) versus

spreading rate (Figure 5.15). It appears from this plot that D is slightly larger in the faster-

spreading data (Pacific-Cocos average = 2.28 ± 0.05) than in the slower spreading data

(Mid-Atlantic Ridge average = 2.21 ± 0.02).

Interpretaion

Summarizing statements made above, we have the following primary observations from

stochastically modeling near-ridge abyssal hill morphology: at large scales the rms height

(H) and characteristic width (4) tend to be positively correlated, while at small scales they

appear negatively correlated; the aspect ratio (a) tends to be much larger at small scales

(both vertical and horizontal) than at large scales; a also has a strong positive correlation

with H at small scales while it is nearly constant over larger values of H; and, neglecting

the Pacific-Nazca data, H and A tend to be negatively correlated and a tends to be

positively correlated with spreadihg rate. At this point we interpret these results in light of

previous work concerning the formation of abyssal hills in different regions.

The negative correlation of H and , with spreading rate up to -13 cm/yr (Figures 5.10

and 5.9) is perhaps one of the strongest of our observations. A likely factor in this

relationship is that at slower spreading rates the lithosphere at and near the ridge axis is

colder [Phipps-Morgan et al., 19871, its elastic thickness is therefore greater [McNutt,

1984], and it is thus able to elastically support larger surface loads than at faster spreading

ridges. This suggests that the maximum size of abyssal hills in any region may reflect the

maximum load which can be elastically supported by the lithosphere at the point of

formation. Also, the differences, stated earlier, in the probable size of faulted features as
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inferred from seismic evidence [Ouchi et al., 1982; Toomey et al., 1988; Huang and

Solo pon, 1988] and in style of volcanic edifice formation [CYAMEX, 1981] between

slow and fast spreading ridges suggests that abyssal hill forming processes tend to produce

larger features at slower spreading ridges. The observation of larger H and An for the

Pacific-Nazca data than for the Pacific-Cocos data does not appear to support these

statement (Figures 5.10 and 5.11). However, these data are all located near the Easter

Island Microplate (Figure 5.2), a region with a complex tectonic history [Hey et al., 19851,

and may be anomalous with respect to the rest of the Nazca spreading section of the East

Pacific Rise. The similarity in stochastic character with the medium spreading Pacific-

Cocos region suggests that the region just south of the microplate may be akin to the

Australian-Antarctic discordant zone [e.g. Weissel and Hayes, 1974]. To properly put this

region in context, however, will require increased data coverage of the flanks of the

Pacific-Nazca Ridge.

Previous work [e.g. Lonsdale, 1977; Bicknell et al., 1987] indicates that surface tectonic

processes related to cooling of the lithosphere are the primary abyssal hill forming

processes at fast spreading rates, where lithospheric necking is not observed. Some of the

observations listed above for the Pacific-Cocos data support these assertions in that they are

inconsistent with the contrary assertion that volcanic edifice formation is the primary

abyssal hill forming process in this region. Observational studies limit the slopes of

submarine volcanic constructs to at most 250 [Menard, 1964; Fornari et al., 1984; Barone

and Ryan, 1985; Smith and Jordan, 1988]. Thus, as the height of a volcanic edifice

grows, so too must its width, contrary to the negative correlation between H and A,,

observed at small scales (Figure 5.6). Also, if an eruption is derived from a magma source

which is limited in the along-axis direction, we can expect the width of an edifice to grow

proportionally faster than the length as its height also grows. Although not conclusive, this

suggests that volcanic edifices are not consistent with the strong positive correlation

between aspect ratio and rms height that is observed at small scales in Figure 5.7. Faulting
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and fissuring, however, are not inconsistent with either of these observed relationships. In

particular, there is no limit on the slope of a fault, allowing for a possible negative

correlation between H and An.

If we accept the statement that horst and graben formation is predominant in the fast

spreading Pacific-Cocos region, then it is likely, based on the stated differences in inter-

parameter correlations over different scales, that a very different process controls abyssal

hill formation at slower spreading rates and larger scales. If preferential faulting driven by

lithospheric necking is predominant, then we must seek to explain why there should be

such a difference between this type of faulting and fissuring and horst and graben

formation. This no doubt could be done, but it is easier at this point to assume, as

suggested by Kong et al. [1987], that volcanic edifice formation is predominant, which is,

perhaps, more consistent with some of the very low aspect ratios observed at slow

spreading rates (and for the Pacific-Nazca data) on Figure 5.13. However, the large

variation in both H and An at slow spreading rates probably indicates that there is a complex

interplay between these two processes, perhaps on regional scales which we cannot discern

with the present data set. We thus concur with the conclusion of Rona et al. [19741 that

both volcanic construction and surface tectonism are important in the formation of abyssal

hills at slow spreading rates.

As a final point we add that the observed average difference in the Hausdorff dimension

between the Pacific-Cocos data and Mid-Atlantic Ridge data (Figure 5.15), though slight,

may reflect the fact that topography produced by surface faulting will generally be rougher

(with more power at smaller scales relative to larger scales) than topography more strongly

influenced by constructional volcanism.

REGIONAL ANALYSIS
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The East Pacific Rise between 90 and 150 N is among the most well surveyed and studied

portions of the world's mid-ocean iift system [e.g. Choukrone et al., 1984; Macdonald et

al., 1984; Derrick et al., 1987; Crane, 1987; Macdonald and Fox, 1988, Edwards et al.,

19891. Not coincidentally, it is also the region of densest coverage of the near-ridge Sea

Beam swaths (27 of the 64, Figure 5.1), allowing us to conduct a detailed comparison

between variations in abyssal hill morphology with variations in ridge morphology over

this region. This analysis extends the previous chapter's analysis of the region between 130

and 150 N.

Ridge Morphology and Magma Supply

The morphology of the East Pacific Rise crest undergoes several transitions within the

study region. South of the Orozco Fracture Zone (150 N) to 130 55' N, the ridge axis is

poorly defined and is characterized by narrow (1-3 km wide), parallel ridges 10-40 km

long, whose crests have an average depth of about 2750 m. South of 130 55' N, the ridge

axis is well-defined by a single crestal horst which gradually shoals to -2600 m and

broadens to -10-15 km wide near 130 N [Edwards et al., 1989]. South of 130 N, the

crestal horst narrows and deepens again to -2750 m where it meets a large overlapping

spreading center at 110 45' N [Macdonald et al., 19841. Based on a fault patterns on the

ridge flanks, Crane [ 1987] argues that this overlapper has migrated southward. South of

110 45' N, the crestal horst shoals rapidly to -2550 m, and persists near that depth until 110

N where it begins to narrow and drop precipitously to -2900 m at 100 15' N where the East

Pacific Rise enters the Clipperton Transform Fault [Macdonald and Fox, 1988]. Just south

of Clipperton, the ridge crest is shallow (-2550 m) and the crestal horst is broad and

remains so until it encounters an overlapping spreading center at 90 03 N [Macdonald and

Fox., 19881. Crane [1987] argues for a southward propagation of the 90 03' N overlapper.

The crest of the East Pacific Rise in the region between 90 and 150 N thus rises and falls

(Figure 5.16) and the crestal horst correspondingly broadens and narrows several times.
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Macdonald and Fox [1988] found that there is an excellent correlation between the rise crest

highs and the presence of magma chamber reflectors found by Derrick et al. [ 1987]. They

thus argue that the systematic variations in ridge morphology correspond to variations in

magmatic budget along the length of the ridge. Where the magma supply is relatively

abundant, the shallow-level magma chamber is kept well supplied, is therefore large (4-6

kin), and will cause a broad and tall isostatic bulge (the crestal horst). Where the magma

supply is less abundant, the magma chamber, if it exists, will be thinner (< 2 kin), and thus

produce a thinner and shorter axial bulge.

H and An

The pattern of rising (and broadening) and falling (and narrowing) rise crests (Figure

5.16) is closely mimicked by the second-order stochastic parameters estimated from the

near-ridge Sea Beam swaths in this region. Figure 5.17 plots both the rms abyssal hill

height (H) and the characteristic width (ALn) of the Pacific-Cocos data as a function of the

average latitude over the length of the swath. Plotting parameters simultaneously gives the

reader a better sense of how geographic variations in different parameters are correlated. H,

the most well-resolved parameter, provides the most coherent correlation with ridge

morphology. Where the ridge crest is high and the crestal horst is broad, the average

abyssal height is relatively small (as low as 30 m). Where the ridge is low and the crestal

horst thin or poorly defined, the average abyssal height is relatively large (as high as 80 m).

The pattern of characteristic widths, though less well resolved, appears to be negatively

correlated with H, which is consistent with the observation noted on Figure 5.6. We

therefore suggest, consistent with statements made in the previous chapter, that abyssal

hills in this region tend to be shorter and wider where the rise crest is shallow and wide and

the magma supply relatively abundant, and taller and thinner where the rise crest is deep

and thin and the magma supply relatively reduced.
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The combination of large H and small , indicates (provided that faulting is the principal

process driving abyssal hill formation, and that fault dip is relatively constant) that the

amount of crustal extension observed at the surface is greater in the regions of low magma

supply than in regions of greater magma supply. If extension is purely proportional to rms

height, then we may be observing a factor of 2 variation in crustal extension. Differences

in An should increase this range since the largest faults will be more densely spaced where

An is small than where An is relatively large.

Observations of greater crustal extension in colder regions may contradict intuition, since

we might expect hotter regions to undergo more cooling, and thus undergo more

extensional deformation than colder regions. However, in the previous chapter we

remarked that full-scale abyssal hill formation appears to begin much earlier in Lhe former

case, due perhaps to the shorter off-axis extent of the magma chamber. Thus, where the

axial magma chamber is small, off-axis surface deformation is probably coupled sooner to

deeper crustal deformation during the most rapid buildup of extensional stress. This would

result, perhaps, in surface deformation which reflects a larger volume of extensional

deformation. On the other hand, the axial magma chamber might also act as a thermal

buffer, allowing the uppermost layer of the crust to cool slowly for a time before allowing

significant cooling of the lower crust. Thus, where the magma supply is more abundant,

the crust will not cool as rapidly (i.e. less rapid stress buildup) at the point of elastic

coupling between upper and lower crust, resulting, perhaps, in a reduced amount of brittle

deformation.

a and A s

The difference between expected (normal to plate motions) and observed abyssal

lineations (Azs ) and abyssal hill aspect ratios (a) for the Pacific-Cocos data are plotted

together as a function of latitude in Figure 5.18. If we momentarily disregard the

complexities in parameters estimated from data south of the Clipperton Transform Fault,
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then these two parameters also display a marked correlation with ridge morphology; A~s

tends to be positive (a counter-clockwise anomaly) and a tends to be lower where the ridge

crest is shallower and broader. Although the error bars on the estimated aspect ratios are

large compared with the regional variation in the estimates, the strong similarity with the

regional variation of other parameters suggests that the pattern is real.

A lower aspect ratio in the hotter ridge sections perhaps indicates that volcanic constructs

play more of a role in abyssal hill formation. This is a strong possibility since off-axis

volcanism is observed near each of the ridge highs in this region [Crane, 19871.

Alternatively, lower aspect ratios may indicate that while faults are more amply spaced

(greater An), they tend to have smaller offsets and so their along-axis extent (and hence

abyssal hill aspect ratio) is reduced. We note, without attempting explanation, exceptions

to the correlation of a with ridge morphology on the two data points closest to the

Clipperton Transform Fault near 100 45' N.

The strong correlation between AC$ and ridge morphology between the Clipperton and

Orozco transform faults is perhaps surprising. Why would the presence of a strong magma

chamber cause a reorientation of abyssal hill lineation of up to 100? A clue toward

answering this question may be found by comparing the lineation azimuth predicted by

plate motion models to the strike of the adjacent ridge axis. Based on maps by Klitgord

and Mammerickx [1982], the East Pacific Rise between the Orozco and Clipperton

transform faults has a strike of -349*, whereas between the Clipperton and Siquieros it is

-3550 . The normal to the spreading direction in this region, based on model RM2 [Minster

and Jordan, 1978] generally ranges between 3530 and 3550, consistent with the latter ridge

axis strike. Thus, between the Orozco and Siquieros transforms (15' N - 100 N), there may

be a 50 discrepancy between ridge strike and the normal to the spreading direction. This is

similar in magnitude and direction to the values of A4s observed along the flanks of the

shallower portions of the ridge crest (Figure 5.18).
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As stated earlier, the steady-state presence of a large magma chamber may serve to

decouple deeper lithospheric deformation from upper crustal deformation during the most

active phase of lithospheric extension. When horst and graben formation first occurs in

this situation, the direction of faulting should be dominated by the ridge-perpendicular

extension driven by cooling following emplacement of magma at the ridge axis. Where the

ridge is deeper and the magma chamber smaller or non-steady state, we expect a stronger

coupling between deeper lithospheric and surface crustal deformation and thus a more

accurate surface expression of deeper lithospheric stresses related to plate cooling.

An important question to address is whether or not we can observe any off-axis

signature of the two large overlapping spreading centers at 90 03' N and 110 45' N. If these

overlappers have migrated southward as suggested by Crane [1987], then we should

expect to see a signature in the variation of estimated parameters, if any exists, somewhat

north of their present locations. Although the larger scale (i.e. > 100 km or so) variations

in all parameters plotted in Figures 5.17 and 5.18 can easily be correlated with the

variations in ridge depth, strong short-scale, or swath-to-swath variations, which are not so

easily explained, occur in all parameters near 9' 45' N and 120 45' N. This erratic behavior

may indicate that we are sampling locally transient phenomena which may constitute the

off-axis trails of the overlapping spreading center.

CONCLUSIONS

Important results from the global analysis are summarized as follows:

(1) The characteristic length (A) is generally positively correlated, and the aspect ratio

(a) generally negatively correlated with the rms height of abyssal hills (H). For the Pacific-

Cocos data, however, these trends are reversed, a and An are generally negatively

correlated with each other.
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(2) Although coverage is spotty, the rms height (H), characteristic width (An) and length

(As) all generally decrease with spreading rate, with the greatest variation in all these

parameters occurring at slow spreading rates. The aspect ratio (a) generally increases with

spreading rate. All of these "trends" appear to reverse between the Pacific-Cocos and

Pacific-Nazca data, which bears more resemblance to the medium rate spreading Pacific-

Rivera data than to the Pacific-Cocos data.

(3) Variations in the difference between expected and observed lineation azimuths (Acs)

can exceed 300 over an individual spreading data set.

(4) The Hausdorff (fractal) dimension appears to be slightly greater at faster spreading

rates.

We have compared these observations to the proposals of others for formation of

abyssal hills, and as a result support the following assertions. At slow-spreading ridges,

the lithosphere at and flanking the ridge axis is relatively cold, its brittle and elastic layer

thicker, and is therefore likely to be capable of elastically supporting the formation of much

larger abyssal hill features than can the hotter fast-spreading ridges. Constructional

volcanism at the ridge crest of slow-spreading ridges episodically produces large edifices

which, after being strongly modified by faulting during passage out of the rift valley,

become principle building blocks of abyssal hills. In contrast, volcanism at fast-spreading

ridges is primarily expressed as flood basalts vnd, because the near-ridge crust is likely

underlain by a large fluid magma chamber, ca.liot build up large edifices despite the large

volume of erupted material. Only when the crust has ridden off the magma chamber (or

some low viscosity region) can features of larger size be produced, and then primarily by

brittle extension of the crust in response to rapid cooling of the surface (probably aided or

even initiated by deep hydrothermal circulation). A possible consequence of these

assertions is that a primary indicator of the difference between tectonism and volcanic

construction may be the aspect ratio, which is likely larger for horst and graben features

than for volcanic features.
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For the Pacific-Cocos regional data set we find a correlation between the variation of

abyssal hill parameters and the variation in ridge morphology associated with magma

supply abundance. Where the ridge crest is shallow and the crestal horst broad and well-

defined, indicating an abundant magma supply, 4 and AC$ tend to be larger, and H and a

tend to be smaller than where the ridge crest is deep and the crestal horst narrow and/or

poorly defined. To explain most of these correlations we suggest that the axial magma

chamber serves to decouple for a time deeper lithospheric deformation from surface crustal

deformation. Where the magma chamber is small or temporally sporadic (deep ridge with

narrow crestal horst), surface and deeper lithospheric deformation couple quickly so that a

greater component of surface topography is a reflection of deeper brittle failure. In this

case, the total volume of extension coupled to the surface, and hence the rms height of

horst and graben formation observed at the surface will be greater. More rapid coupling

may also cause the azimuth of abyssal hill lineation to be more reflective of larger scale

plate stresses vhere they may differ from stresses associated only with the morphology of

the ridge. Where the magma chamber is large, the formation of horst and graben features is

severely limited for a time by the shallowness of the brittle layer over the chamber. During

this phase of abyssal hill formation, any deeper lithospheric deformation that may occur

will be entirely decoupled from surface topography by the intervening weak zone, and the

direction of extensional faulting in response to surface cooling should be controlled by

ridge morphology rather than plate stresses. What surface faulting does form, however,

will provide pre-existing zones of weakness for further surface tectonism when the magma

chamber ceases and surface deformation is finally coupled to lithosphere deformation
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TABLE 5.1. Sea Beam Data Used for Parameter Estimation.

Starting Starting Length Spreading
Starting Latitude, Longitude, of Data. Rate,

Swath Cruise Ship Starting Date Time deg N deg E km mm/yrt'

1 Papawa 1 TW Sep. 20, 1985 1730 21.48 -109.71 64 60.3
2 Pascua 1 TW Jan. 08, 1983 0500 21.23 -109.87 75 60.6
3 Ceres 4 TW Oct. 23, 1982 0415 20.93 -109.27 65 60.4
4 Ariadne 3 TW Apr. 25. 1982 0100 20.84 -109.43 86 60.6
5 Pascua 1 TW Jan. 08, 1983 0830 20.74 -109.38 54 60.7
6 Ceres 4 TW Oct. 23, 1982 0030 20.69 -108.69 60 60.3
7 Papawa I TW Sep. 20, 1985 2230 20.64 -109.20 62 60.8
8 Ceres4 TW Oct. 21, 1982 1830 20.51 -108.76 46 60.5
9 Ceres 4 TW OcL 22, 1982 1200 20.50 -108.76 48 60.5
10 Ceres 2 TW Jul. 29, 1982 0830 14.70 -104.42 43 100.6
11 Ceres 2 TW Jul. 29, 1982 0600 14.84 -103.97 41 100.3
12 Ceres 2 TW Jul. 27, 1982 1715 14.07 -103.61 56 103.3
13 2607 RC Jun.07,1985 0200 13.41 -104.34 33 105.4
14 Papatua 1 TW Oct. 14, 1985 0530 13.17 -104.62 54 106.5
15 2607 RC Jun.09, 1985 1000 13.10 -103.70 38 107.1
16 Papatua I TW Sep. 23, 1985 2100 12.89 -104.81 64 107.4
17 Papatua I TW Oct. 12, 1985 2130 12.80 -104.13 57 108.1
18 2607 R C Jun. 08, 1985 1400 12.82 -103.61 25 108.1
19 2607 R C Jun. 08, 1985 1830 12.73 -104.03 27 108.3
20 2607 RC Jun. 02, 1985 0430 12.56 -103.80 32 108.6
21 2607 RC Jun. 01, 1985 2200 12.25 -104.24 44 109.7
22 Ceres 2 TW Jul. 26, 1982 0330 12.15 -103.15 54 110.9
23 21.25 All May 31, 1985 0800 11.58 -103.66 72 111.8
24 2607 RC Jun. 01, 1985 0530 11.51 -103.71 48 112.7
25 2L26 All Jun. 07, 1985 0800 11.33 -103.01 81 115.8
26 2607 RC May 31, 1985 2300 11.14 -104.10 37 113.9
27 2607 RC May 31, 1985 1840 10.97 -103.78 51 114.8
28 2607 RC May 31, 1985 1300 10.84 -103.28 40 115.5
29 2607 RC May 31, 1985 0730 10.68 -103.57 22 116.2
30 2607 RC May 30, 1985 2200 10.53 -104.35 23 116.4
31 2607 RC Jun. 12, 1985 0500 9.91 -103.75 40 119.0
32 2607 RC Jun. 16, 1985 1500 9.76 -104.21 23 119.4
33 2607 RC May 27, 1985 0830 9.74 -103.07 42 119.8
34 2607 RC Jun. 16, 1985 1000 9.70 -104.63 30 119.5
35 2607 RC Jun. 17, 1985 0000 9.45 -103.90 27 120.5
36 2607 RC Jun. 17, 1985 0530 9.41 -104.33 19 120.5
37 Pacua4 TW Apr. 10, 1983 1100 -22.60 -114.21 76 169.6
38 Pascua 4 TW Apr. 10, 1983 0445 -22.52 -115.37 73 169.6
39 Pucua 3 TW Mar. 06,1983 1600 -29.06 -110.79 66 171.0
40 Pascua 3 TW Mar. 07, 1983 2100 -29.95 -111.43 138 171.1
41 Pascua 3 TW Mar. 08, 1983 0700 -30.13 -110.02 103 171.1
42 Pascua 3 TW Mar. 09, 1983 1300 -31.20 -113.14 96 171.1
43 Pascua 3 TW Mar. 09,1983 2130 -31.49 -111.76 75 171.1
44 2509 RC Jul. 30, 1984 0300 46.41 -30.15 199 23.6
45 4L2 All May 19, 1986 1500 27.85 -50.39 177 26.1
46 2511 RC Sep. 18, 1984 1500 23.58 -47.04 140 26.8
47 4L2 All Jun. 13, 1986 2100 23.21 -45.38 179 26.8
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Table 5.1. Continued.

- Starting Starting Length Spreading
Starting Latitude. Longitude, of Data Rate.

Swath Cruise Ship Starting Date Time deg N deg E km mn/yrb

48 2602 R C Feb. 18, 1985 2300 1.44 -30.79 123 35.9
49 2602 RC Feb. 16, 1985 0000 0.03 -22.66 126 36.5
50 2602 RC Feb. 15, 1985 0200 -1.26 -18.55 131 36.9
51 2602 RC Feb. 14, 1985 0500 -2.58 -14.65 107 37.4
52 2806 RC Jun. 12, 1987 1300 -3.70 -15.42 173 37.6
53 2515 RC Jan. 08, 1985 2000 -8.32 -16.57 163 38.5
54 2711 RC Dec. 12, 1986 1430 -25.54 -12.12 115 39.5
55 2711 R C Dec. 13, 1986 0200 -26.04 -14.42 95 39.5
56 2711 RC Dec.20, 1986 1330 -26.27 -13.80 117 39.5
57 2711 RC Dec. 13, 1986 2200 -27.18 -13.29 118 39.4
58 2711 R C Dec. 13, 1986 1500 -27.38 -14.60 82 39.4
59 Marathon 10 TW Jan. 06, 1985 0930 -35.67 -16.12 101 38.5
60 Marathon 10 TW Jan. 08, 1985 1600 -36.87 -17.44 75 38.3
61 Marathon 10 TW Dec.22, 1984 1100 -37.04 .21.14 84 38.3
62 2709 RC Oct. 03, 1986 0300 -21.83 57.46 91 47.1
63 2709 RC Oct. 03, 1986 1630 -24.21 57.51 83 49.2
64 2709 RC Oct. 04, 1986 0000 -25.50 57.45 119 50.4

a All: RV Atlantis I, RC: RV Robert Conrad, TW: RV Thomas Washington.

b Spreading rates from model RM2 (Minster and Jordan, 1978].
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TABLE 5.2. Stochastic Parameters Derived From Inversion.

Swath H, m Cs. deg A. , km As, km a D

1 76 ± 8 20.9 ±1.8 2.8 ± 0.6 12.9 ± 3.6 4.7 ± 1.3 2.15 ± 0.21
2 116 14 19.0 3.3 5.2 ± 1.0 13.4 ± 3.3 2.6 ± 0.7 2.21 ± 0.13
3 110 14 9.9 3.7 4.3 ± 0.9 11.5 ± 2.9 2.7 ± 0.7 2.20 ± 0.17
4 104 ± 15 17.5 ± 1.7 6.8 ± 1.7 34.0 ± 11.3 5.0 ± 1.7 2.33 ± 0.20
5 85 ± 10 19.0 ± 3.5 3.5 ± 0.7 9.5 ± 2.0 2.7 ± 0.6 2.20 ± 0.19
6 73 ± 9 40.9 ± 2.4 5.1 ± 1.3 19.6 ± 6.5 3.9 ± 1.3 2.42 ± 0.13
7 99 ± 23 20.2 ± 5.0 9.4 ± 3.8 23.6 ± 9.8 2.5 ± 1.1 2.52 ± 0.10
8 73 ±6 44.4 ±4.2 3.1 ± 0.8 7.4 ± 2.0 2.4 ± 0.7 2.23 ± 0.24
9 80 ±8 34.5 ±3.6 3.1 ± 0.6 7.9 ± 1.5 2.6 ± 0.6 2.20 ± 0.30
10 67 ± 4 352.0 ± 2.0 1.2 ± 0.3 8.3 ± 2.0 7.1 ± 2.0 2.50 a
11 72 ±6 347.0 ± 2.0 1.2 ± 0.4 7.4 ± 2.0 6.1 ± 1.9 2.50 a
12 68 ± 5 351.0 ± 2.7 1.8 ± 0.4 11.3 ± 3.2 6.3 ± 1.9 2.50 a
13 57 ± 4 352.7 ± 1.1 1.6 ± 0.3 10.5 ± 1.9 6.7 ± 1.5 2.50 a
14 44 3 350.9 ± 2.0 2.3 ± 0.5 14.1 ± 3.5 6.1 ± 1.6 2.39 ± 0.30
15 48 ± 3 345.5 ± 2.0 1.5 ± 0.4 10.9 ± 3.3 7.1 ± 2.2 2.50 a
16 46 ± 4 349.8 ± 2.0 4.2 ± 1.0 18.9 ± 5.0 4.5 ± 1.3 2.48 ± 0.13
17 58 ±3 349.9 ± 1.8 2.0 ± 0.4 9.8 ± 2.0 4.8 ± 1.1 2.50 a
18 48 ± 5 340.5 ± 3.5 2.3 ± 0.7 8.8 ± 3.0 3.9 ± 1.4 2.38 ± 0.22
19 58 ± 5 344.6 ± 1.5 1.6 ± 0.5 16.6 ± 5.9 10.3 ± 3.8 2.50 a
20 72 ± 13 348.7 ± 3.0 4.2 ± 1.7 28.3 ± 17.0 6.8 ± 4.0 2.10 ± 0.15
21 60 ± 6 354.9 ± 1.3 2.2 ± 0.6 35.4 ± 22.1 16A ± 9.5 2.25 ± 0.15
22 58 ± 4 353.3 ± 1.9 2.0 ± 0.5 11.3 ± 3.2 5.6 ± 1.7 2.34 ± 0.39
23 57 ± 4 353.6 ± 1.8 2.2 ± 0.6 17.7 ± 6.6 7.9 ± 2.9 2.50a

24 39 ± 4 343.0 ± 5.0 2.7 ± 0.8 8.1 ± 2.5 3.0 ± 1.0 2.17 ± 0.19
25 62 ± 3 348.0 ± 1.4 1.6 ± 0.3 14.9 ± 3.9 9.5 ± 2.5 2.17 ± 0.15
26 44 ± 4 348.2 ± 2.6 2.0 ± 0.6 11.8 ± 4.4 6.0 ± 2.3 2.13 ± 0.17
27 55 ± 5 345.2 ± 1.8 2.0 ± 0.6 16.6 ± 5.9 8.3 ± 3.0 2.29 ± 0.20
28 70 ± 5 348.0 ± 1.4 1.4 ± 0.4 15.7 ± 6.1 11.1 ±4.2 2.50a
29 70 ± 7 354.1 ± 1.9 1.5 ± 0.4 11.3 ± 3.6 7.5 ± 2.6 2.50a

30 83 ± 9 354.8 ± 3.6 1.9 ± 0.6 8.3 2.9 4.4± 1.7 2.06 ± 0.45
31 49 ± 4 1.5 ± 1.5 2.2 ± 0.6 16.6 ± 4.9 7.6 ± 2.3 2.22 ± 0.20
32 34 ± 4 341.9 ± 5.0 2.1 ± 0.7 7.3 ±2.6 3.4 1.3 2.09 ± 0.26
33 56 ± 4 356.0 ± 1.2 1.9 ± 0.5 14.9 ± 3.9 7.7 ± 2.2 2.54 ± 0.21
34 37 ± 4 338.4 ± 3.5 2.2 ± 0.7 8.3 ± 2.7 3.7 ± 1.3 2.47 ± 0.17
35 54 ± 7 3.3 ± 1.9 2.2 ± 0.7 18.9 8.8 8.5 ±3.9 2.28 ± 0.20
36 43 ± 5 356.1 ± 2.4 1.4 ± 0.5 9.1 ±3.2 6.4 ±2.4 2.50 a
37 67 ± 7 26.4 ± 6.3 5.0 ± 1.5 14.1 ± 5.7 2.8 ± 1.1 2.38 ± 0.12
38 54 ± 4 0.4 ± 2.7 3.4 ± 0.9 16.6 ± 6.9 4.9 ± 2.0 2.51 ± 0.15
39 132 ± 16 3.2 ± 5.3 3.6 ± 0.9 13.4 ± 6.4 3.7 ± 1.7 2.10 ± 0.10
40 127 ± 15 355.2 ± 27.8 8.0 ± 1.7 10.1 ± 3.4 1.3 ± 0.4 2.13 ± 0.08
41 70 ± 9 6.5 ± 15.4 7.6 ± 2.5 13.8 ± 6.3 1.8 ± 0.8 2.35 ± 0.09
42 75 ± 6 308.9 ± 57.4 4.6 ± 1.1 5.1 ± 1.2 1.1 ± 0.3 2.23 ± 0.12
43 99 ± 12 337.3 ± 50.0 5.8 ± 1.2 8.5 ± 4.5 1.5 ± 0.7 2.32 ± 0.09
44 126 ± 14 354.0 ± 4.0 11.4 ± 2.9 26.7 ± 6.7 2.3 ± 0.7 2.21 ± 0.07
45 226±18 15.3 ± 4.9 5.2 ±1.0 11.1 ± 3.5 2.1 ± 0.6 2.11 ± 0.18
46 226 ± 23 8.1 ± 3.5 6.0 ± 1.0 18.8 ± 6.6 3.1 ± 1.0 2.22 ± 0.09
47 292 ± 32 0.6 ± 3.2 7.6 ± 1.4 20.9 ± 6.5 2.8 ± 0.8 2.05 ± 0.09
48 207 ± 39 355.3 ± 5.6 11.9 ± 3.5 29.3 ± 13.3 2.5 ± 1.1 2.40 ± 0.06
49 105 ± 20 357.0 ± 9.2 15.2 ± 5.3 60.9 ± 134.5 4.0 ± 8.4 2.34 ± 0.09
50 179 ± 21 350.8 ± 2.0 7.3 ± 1.3 27.9 ± 7.0 3.8 ± 0.9 2.07 ± 0.12
51 216 ± 34 351.7 ± 3.2 8.8 ± 1.9 21.7 ± 5.8 2.5 ± 0.7 2.17 ± 0.10
52 164 ± 15 358.0 ± 7.0 7.9 ± 1.8 15.8 ± 4.7 2.0 ± 0.6 2.26 ± 0.10
53 115 ± 20 0.4 ± 9.0 20.2 ± 7.2 40.4 ± 23.1 2.0 ± 1.1 2.36 ± 0.07
54 299 ± 33 351.2 ± 2.9 6.3 ± 1.1 13.4 ± 3.2 2.1 ± 0.5 2.02 ± 0.10
55 184±22 328.4±2.1 5.8± 1.1 17.6±4.6 3.1 ±0.8 2.10±0.11
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Table 5.2. Continued.

Swazh H, m 's, deg An, km As, km a D

56 276 ± 42 357.5 ± 6.3 8.8 ± 2.3 30.4 ± 33.2 3.5 ± 3.5 2.10 ± 0.09
57 209 ± 28 349.2 ± 2.1 9.2 ± 2.2 33.6 t 11.2 3.7 ± 1.2 2.36 ± 0.07
58 170 ± 19 347.1 ± 1.8 4.3 ± 0.7 15.9 ± 3.8 3.7 ± 0.9 2.10 ± 0.10
59 177±30 323.0± 22.0 5.7±1.9 11.Z ±8.6 2.0±1.4 2.10±0.10
60 214 ± 50 0.0" 7.0 ± 2.2 0.0" O0. 2.10 ± 0.10
61 123 ± 21 338.6 ± 37.0 4.7 ± 1.4 6.4 ± 4.6 1.4 ± 0.9 2.10 ± 0.10
62 116 ± 12 313.1 ± 3.1 3.6 ± 0.8 16.7 ± 5.9 4.7 ± 1.6 2.10 ± 0.10
63 51 ± 3 312.7 ± 3.1 3.1 ± 0.7 14.1 ± 4.2 4.6 ± 1.4 2.37 ± 0.25
64 70 ± 7 306.7 ± 4.0 4.4 ± 1.0 15.9 ± 5.3 3.6 ± 1.2 2.06 ± 0.18

3 Pararneter fixed in inversion.
b Unstable prameter.
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Figure 5. 1. Pacific-Riven and Pacific-Cocos Sea Beam swaths listed in Table 5. 1. Xs
mark the beginning and end of track lines used in the inversion for stochastic parameters.
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Figure 5.2. Pacific-Nazca Sea Beam swaths listed in Table 5. 1. X's mark the
beginning and end of track lines used in the inversion for stochastic parameters.
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Figure 5.3. id-Atlantic Ridge and Africa-India Sea Beam swaths listed in Table 5. 1.
X's mark the beginning and end of track lines used in the inversion for stochastic
paramneters.
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Figure 5.4. Stages in the evolution of abyssal hills (adapted from CYAMEX [1981])
illustrated for slow, medium, and fast spreading ridges: 1) axial zone of volcanic extrusion,
2) formation of rifted and horst and graben relief, 3) predominantly inward facing faults
associated with lithospheric necking, and 4) the inactive zone, where abyssal hills are
slowly modified by mass wasting, sedimentation, and occasional off-axis volcanism. In
slow spreading regions, Harrison and Stieltjes [1977] propose an additional phase of
tectonic activity (noted as 3b) to allow for the steady state rift mountains. Stage 3 is not
observed at fast spreading regions, but and additional phase to stage 2 (noted as 2b)
represents observations of a sudden onset of large scale normal faulting leading to the full
size of flanking abyssal hills. The region below the axis of the fast spreading ridge
represents the axial magma chamber and/or low viscosity region postulated to help explain
stage 2b. See text for further discussion.
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Episodic Volcanic Construction (unrifted) [Lewis, 1979]

Rifting (Lonsdale. 19771

Horst and Graben (Lonsdale, 1977]

Preferential Faulting Dimction:

(Harrison and Sgieltjej, 1977] [Rea, 19751

or

Split Volcanic Ridges (McdonaLd and Luyendyk, 1985; Kappel and Ryan, 1986]

Figure 5.5. Various proposed m-echanisms for the formation of abyssal hills.



166

0

PO

0
x 0

o0.- 0
W i-2(_ Co z C LO

C

C

2 0o L0

000,', ,. < E

0 O0x 10.

to

x 0

0

LOLO )' LO
°0

LA 0 to 0 to 0

WL tUy

Figure 5.6. Estimated values of characteristic width (An) plotted as a function of rms
height (H). Values are listed in Table 5.2. Ellipses represent 1-a errors about each
estimation. Different symbols represent data from different spreading regions as indicated.
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Figure 5.7. Estimated values of aspect ratio (a) plotted as a function of rms, height (H).
Values are listed in Table 5.2. Ellipses represent I1-or errors about each estimation.
Different symbols represent data from different spreading regions as indicated.
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Figure 5.8. Estimated values of aspect ratio (a) plotted as a function of characteristicwidth (A). Values are listed in Table 5.2. Ellipses represent I-a" errors about each
estimation. Different symbols represent data from different spreading regions as indicated.
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Figure 5.9. Estimated values of characteristic length (As) plotted as a function of
characteristic width (An,). Values are listed in Table 5.2. Ellipses represent I1-a errors
about each estimation. Different symbols represent data from different spreading regions
as indicated.
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Figure 5.10. Rms height (H)D (Table 5.2) plotted as a function of spreading rate (Table
S. 1) as determined by model RM2 [Minster and Jordan, 1971]. Bars represent I1-a errors
about each estimation. Different symbols represent data from different spreading regions
as indicated.
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Figure 5.11. Characteristic width (4,) (Table 5.2) plotted as a function of spreading rate
(Table 5. 1) as determined by model RM2 [Minster and Jordan, 1978]. Bars represent I1-a
errors about each estimation. Different symbols represent data from different spreading
regions as indicated.
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Figure 5.12. Characteristic length (As.) (Table 5.2) plotted as a function of spreading
rate (Table 5.1) as determined by model RM2 [Minster and Jordan, 1978]. Bars represent
1-or errors about each estimation. Different symbols represent data from different
spreading regions as indicated.
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Figure 5.13. Aspect ratio (a) (Table 5.2) plotted as a function of spreading rate (Table
5. 1) as determined by model RM2 [Minster and Jordan, 19781. Bars represent I1-a errors
about each estimation. Different symbols represent data from different spreading regions
as indicated.
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Figure 5.14. Difference (As) between the normal to spreading direction and estimated
abyssal hill lineation ( s) (Table 5.2) plotted as a function of spreading rate (Table 5.1) as
determined by model RM2 [Minster and Jordan, 1978). Bars represent 1-cyerrors about
each estimation. Different symbols represent data from different spreading regions as
indicated.
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Figure 5.15. Hausdorff dimension (D) (Table 5.2) plotted as a function of spreading
rate (Table 5. 1) as determined by model RM2 [Minster and Jordan, 1978]. Bars represent
1-ar errors about each estimation. Different symbols represent data from different
spreading regions as indicated.
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Figure 5.16. Depth to shallowest point of the East Pacific Rise crest plotted as a
function of latitude. Reprinted from Macdonald er. al. [ 1984].
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Figure 5.17. Rms height (H) and characteristic width (A,,) (Table 5.2) for the Pacific-
Cocos data plotted as a function of average latitude of each swath. Bars represent -a
errors about each estimation.
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ratio (a) (Table 5.2) for the Pacific-Cocos data plotted as a function of average latitude of
each swath. Bars represent -o errors about each estimation.



179

CHAPTER 6

NON-GAUSSIAN STOCHASTIC ANALYSIS OF THE SEAFLOOR

INTRODUCTION

The work presented in this thesis till now has focused on the use of second-order

(Gaussian) statistics in the characterization of abyssal hill morphology. As we have shown

in previous chapters, this work provides a very useful low-order quantitative description

which can be applied to the geophysical study of ridge-crest and abyssal hill forming

processes. However, second-order statistics are, in a sense, only half the statistical

picture. In the wavenumber domain they only provide information regarding the amplitude

of the spectrum, with no constraint on the phase. In the space domain second-order

statistics provide no means of describing, for example, asymmetries in the distribution.

Asymmetries in the vertical distribution can tell us whether or not peaks tend to be larger

and sharper than troughs (or vice verse). This type of parameter can be related to the

amount of sediment ponding or, p-,rhaps, to the degree to which the morpholo-" was

constructionally (e.g by extrusive volcanics) or destructionally (e.g. by rifting or faulting)

formed. Asymmetries in the lateral distribution, such as that slopes facing one direction

tend to be steeper or more gradual than those facing the opposite dire,;tion, can also be

important. Lateral asymmetries may be related to the style of normal faulting contributing

to abyssal hill formation. Another important characteristic unmodeled by second-order

statistics is the size of the tails of the probability density. Large tails allow for occasional

large peaks to exist in the topography. This "peakiness" may be related to the degree to

which the formation of abyssal hills is non-uniform or episodic. Quantifying such higher-
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order characteristics may be an important means of evaluating the validity of various

models for the formation of abyssal hill (Figure 5.5).

To quantify these higher-order features we must appeal to higher statistical moments

than order two. In this chapter we introduce a mathematical framework for the study of

higher moments of a topographic field. This framework is built upon the concept that

lower-order moment provide the groundwork for studying the higher-order moments.

Following this general discussion we propose a very simple 1-D parameterized model for

moments up to order 4. This model includes two parameters for the third moment,

describing vertical and lateral asymmetries, and one for the fourth moment, which

describes the peakiness of topography. We then describe initial methods for estimating

these parameters from bathymetric profiles. Finally, we present a general comparison of

results from near ridge data from the Pacific and Atlantic oceans, and discuss these results

with reference to abyssal hill forming processes.

FRAMEWORK FOR THE STUDY OF HIGHER-ORDER MOMENTS

In this section we present a framework for the study of higher-order moments based on

decomposition of moments by the process of "iterated" expectation. Through this

decomposition, a statistical moment is represented in terms of two-point conditional

expectations, lower moments, and the vertical (disjoint) moment of the same order. We

shall also show in this section that we can determine the conditional expectation if we are

given a morphological model expressed in terms of an invertible mapping from a

topographic field with known statistics (e.g. a Gaussian). (Such mapping models are

useful both for the fact that they can be very intuitive, and for their utility in generating non-

Gaussian synthetic topography.) Any moment of the model can thus be computed if we

know the lower order moments and the vertical moment of the same order (which, as we

will see in the next sectiorn, can be a parameter in the mapping). This yields a forward
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problem, allowing for the formulation of an inverse problem which estimates model

parameters from estimates of topographic moments.

Decomposition of the N-Point Moment

The N-point moment was introduced in Chapter 2, equation (2.3). Using "iterated"

expectations, we decompose the N-point moment in the following way [e.g. Taylor and

Karlin, 1984, p. 47]:

E[hih2h3 ..h]j = E[h, E[h2h3 ...hnI h1] (6.1)

where hi-- h(xi). In the following discussion, the index i represents an arbitrary

coordinate index, whereas the index j is used interchangeably as a second arbitrary

coordinate index or, when added to i, as a lag index. We express each hj in terms of a

component which is dependent on hl and a component which is independent of hj:

h. = E[h.I h] + X (6.2)

By this construction, XP) is uncorrelated with hi; i.e. if we multiply (6.2) by hi and take

the expected value, we obtain

E[h h) = E[h1 E[hJhl]] + E[h X 1)  (6.3)

The first term on the right-hand-side is simply the iterated expectation of E[hlhj]. Thus the

second term of the right-hand-side of (6.3) is zero; i.e. xPl) is uncorrelated with hi. It is

also clear that the two right-hand terms in (6.2) are uncorrelated with each other. This is

shown by multiplying (6.2) by E[hlhj] and again taking the expected value. Since
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E[hjE[hjlhl]] = E[E[hj hi] E[hj hl]] (again by iterated expectation) we must have E[E[hjlhl]

Xj()] = 0. or that XjP) is uncorrelated with E[h,4hi].

E[hjlhl] is a function of hl and lag (i - 1) whose expected value, as is that of hl, is zero.

To emphasize this dependence we write it asfj(hl). Inserting (6.2) into (6.1) then yields

(1)(1) (1)
E[h1h2h3 ...h1] = E[h, E[(f2 (hl) + X2')(f 3(h) + X3 )...(f,(hl) + X,, )1h] (6.4)

The inner conditional expectation can easily be computed with this construction;

conditioned on hl,fj(hl) is a constant, and XP) is independent of hl, so that the inner

conditional expectation is simply a computation of various moments of X(1) up to order n-

1 multiplied by constants. Using (6.2), these moments can be computed if we know the

moments of h to order n-I and the functions (h). The third moment provides a useful

example:

(1) (1)
E[h1h2h31 = Eh 1 E[(f2 (hl) + X2 )(f3(h1 ) +X 3 )1h1]]

(1)() )

- E[h/f2(hl)f3(hl)] + E[hjf2(h,)E[X3 11 + E[hf 3(h)E[XR ]] + E[hlE[X2 X 3 1] (6.5)

By taking the expected value of both sides of equation (6.2), we find that E[XflI)] = 0.

Thus the second and third terms of the right-hand-side of (6.5) are zero. Also, since E[hl]

= 0, the last term in (6.5) is also zero (we don't need to calculate E[X 2(1 ) X3 (1)] at this

stage). We are thus left with

E[hih2h3] = E[h/ 2 (h1)f(h 1)] or E[h1E[h21h1]E[h31h1]] (6.6)
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Using equation (6.6), the full third moment of h can be computed by integrating the

argument of the outer expectation over the (disjoint) probability density of h, which

requires that we be able to specify the density to third order and thefj(hi) functions.

Mapping Models and the Calculation off hi)

For visualization purposes, we represent fj(hi) in terms of its Gaussian and non-

Gaussian components:

E[hJhi] h = (h r h + g (hi) (6.7)

rij is the correlation function (rij = Chh(xi - x1)/H2 ) between hi and hj. gj(hi) is thus the

change in conditional expectation from what it would be if h were Gaussian distributed.

An important constraint on gj(hi) is derived by taking the covariance between hi and hi:

E[h.jhl = C,(x.-x 1) = H2r. = E[h E[hl]i1 (6.8)

By inserting (6.7) into the right-hand-side of (6.8), we see that E[hi g)(hi)] = 0. We also

find, by taking the expected value of equation (6.7), that E[gj(hi)] = 0.

fj(hi) and gj(hi) can be calculated if we know the conditional probability density function

for two points:

E[h.Ih.] = f h ' p(h'Ihi ) dh' (6.9)

At this point we part with complete generality so that we can do something useful. We

now assume that we intend to apply the study of higher order moments to a morphological

model. In particular, this model is one which is expressed by a one-to-one, onto (i.e.
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invertible) mapping MG*P (with inverse mapping MP- ' G) of a topographic field with

known statistics hiG (presumably, but not necessarily Gaussian), such that

I = MAG (h'), h G = MP-(hj)  (6.10)

We also assume that the mapping preserves second-order statistics, so that the mean and

covariance of h is identical to that of hG . As we shall see in the next section, such

mappings can be very convenient both for our ability to intuitively grasp their effect on the

topography and in their utility for generating synthetic realizations with non-Gaussian

statistics.

The following equation allows us to numerically calculate p(hjlhi), and thusfjXhi), for a

given mapping:

G G G G dh)G Gp(hJh.)dh. = p(h. Ih. ) dz., dh. = (h.+-) (h. .4i ) (6.11)
ja i j I J 1 2 1 2

The validity of (6.11) can be seen in the following way. Consider first all positions i of a

finite topographic field for which the value = ci, the total number of which = N(ci). We

then express the conditional probability that at position i + j the value is hi + j within a given

interval Ah:

N~hi.i-- <hi+'<h.+-)th Ah

A/l <l hh 5 h + A i ~ -P(h.i 2 i +jN i+ 22 ) N(ci)

p(hi +jI) Ah (6.12)

If the mapping is invertible, then
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N(cG) = N(c,) (6.13)
N((h. Ah )G <hG ' Ah+-hG = Ah+ h

2 h .(h +- 2 2 ~ 2

Using these substitutions in (6.12) and taking the limit as the size of the topographic field

becomes arbitrarily large and as Ah -+ 0 yields (6.11).

We are thus able, given a morphological mapping model, to calculate any moment of the

resulting field, providing a critical link between our primary tool for estimation and a

parameterized representation of topography which is intuitively clear and can be used to

generate synthetic topography.

A SIMPLE THIRD AND FOURTH MOMENT MODEL

In the previous section we showed that, given an invertible morphological mapping, we

can determine all the moments of the resulting topographic field. In this section we will

present a combination of two 1 -D mapping models which provide three parameters

describing vertical and lateral asymmetries and peakiness in the distribution. The

asymmetries can be estimated using the third moment and peakiness by the fourth.

Vertical Asymmetry and Peakiness

For describing vertical asymmetry we propose to use the topographic skewness y3 =

E[h3 (x)]/H 312. The skewness will be positive if peaks tend to be sharper and broader than

troughs, and will be negative if the reverse is true. For describing peakiness we propose to

use the topographic kurtosis p4 = E[h 4 (x)]/H 2 . For a Gaussian field, p4 -= 3. At larger

values of p.4, larger peaks and troughs will become more exaggerated while topography

nearer the mean will be shifted even closer to the mean. An increase in peakiness also

results in an increase in boxiness.
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The skewness and kurtosis are well known parameters and we do not require the

framework described above to estimate or understand them. Without the framework,

however, these parameters do not provide a complete description of the third and fourth

moments of the topographic field. For example, if we know the covariance and the value

of A3, can we also determine E[hjh2 h3]? Also, how do we synthesize topography with

non-zero y3 and/or non-Gaussian y4? To answer the latter question (and provide a means

of answering the former) we construct a mapping of a topographic field with a Gaussian

density to a field with a density having the same second moment and with skewness and

kurtosis given by desired values of M3 and p4. We can formulate such a density using

Hermite polynomials, whose terms are perturbations to a Gaussian function with

coefficients given by the statistical moments A (i > 2). To fourth order, these are given by

[Papoulis, 1965]

2 r P3 +
PH(h,C, 3 ,p 4 ) exp(-h 2 2) [ + 3 o3 a

44 - 3 -.-i + 3)] (6.14)

where C = (,U2) 1/ 2. Equation (6.14) is plotted in Figure 6.1 at various values of J3 and P4.

Note that where u.3 is non-zero while p4 = 3 (top panel), the function can become negative,

which is not acceptable for a probability density. This reflects the fact that when p3 is non-

zero, either the peaks or the troughs are "peaky", which is the topographic property of

kunosis. It is thus not surprising that the negative portions of PH can be eliminated by

increasing the value of ,14 in (6.14) (bottom panel of Figure 6.1). Thus non-Gaussian

values of p4 must be considered when non-Gaussian values of p3 are as well. Equation
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(6.14) also becomes negative at vales of p4 > 7 (middle panel), indicating perhaps that

higher moments than 4 should also be considered when p4 is large.

Using (6.14) the Hermite mapping algorithm proceeds as follows:

1. A Gaussian realization (see Appendix B) is generated from the desired covariance

model.

2. For each value of the Gaussian realization hGi, the probability distribution at that

value is calculated by integrating the probability density

h
o

PH(h=,a,0,3) p(h a,,3)Gdh (6.15)

3. The value hi is then found for which PH(hi, r,13 ,P4) = PH(hG,a,O,3).

Figure 6.2 shows a Gaussian profile and the mapping of this profile into Hermite

probability spaces with various values of #3 and t4. From these plots the reader can gain

an intuitive sense of the meaning of vertical asymmetry and peakiness.

Armed with a morphological mapping, we can now address the question of what is the

general third and fourth moment of a mapped field. The first step is to calculate gj(hi)

using, in order, equations (6.11), (6.9), and (6.7). Figure 6.3 shows gj(hi) calculated in

this manner at different values of 43 and /4. We have also calculated these functions

numerically by generating 50 synthetic profiles using the mapping algorithm, and then

binning and averaging the difference between observed conditional values and the expected

conditional value under the Gaussian hypothesis; i.e. each bin is the average of all

differences hi +j - rjhi where hi falls within an interval ci ± Ah. The close match between

each of the two plots if Figure 6.3 indicates that we are generally successful in calculating

the functions gj(hi) for the Hermite mapping model.

Using equation (6.6) we can now calculate E[hihi +,hi + k] = Chhh(xj,xk) by integrating

hifj(xi)fk(xi) over the probability density for h (6.14). There are many redundancies in
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the third moment. For example, for a 1 -D profile the axis xj = 0 is identical to the axis xk

0, and the axis xj = -xk is identical to the axis xj = 2 xk. In all there are six redundant

regions on the lag coordinate plane [Nikias and Raghuveer, 1987]. We restrict

consideration to the cases xk ! 0:< xj, and xj < 0 ! xk, where Lxkl 5 Lxjl. Figure 6.4

shows three axes of Chhh(xjaxk) calculated using (6.6) for the case A3 = 0.5, and

covariance parameters ko = 1.0 and D = 1.5. The three axes correspond to the cases xk =

0, xj = -2xk , and xj = -Xk, presenting the widest possible variation in the region of

consideration. Also shown in Figure 6.4 are estimated third moment axes generated by

averaging the following summation over 50 synthetic profiles:

N,

Jhh(XJ.hk) = - h~i+i+.=(6.16)

The match for all three axes is very good, indicating that we are successful in predicting the

general form of the third moment under the Hermite mapping described above.

Lateral Asymmetry

We use the following mapping algorithm to generate synthetic profiles whose slopes

facing in one direction are on average steeper than slopes facing in the opposite direction:

1. A Gaussian profile is generated from the desired covariance model.

2. Each value of the Gaussian realization hG(xi) is mapped to a new coordinate position

using the equation

h(xi + ahG(x,)/H' = hG(x.) (6.17)

3. The tilted profile is then resampled at the original data spacing by linear interpolation

between nearest neighbor points.
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We call this algorithm the uniform tilt mapping since features of identical shape but

different scale will continue to have the same relative shape and scale after mapping. If we

follow this mapping algorithm with the Hermite distribution mapping, we can produce a

synthetic realization with all three characteristics that we are trying to model. Figure 6.5

shows several examples of profiles generated using various combinations of the two

mapping algorithms. Where a is positive, slopes facing to the right are steeper than those

facing the left. This is particularly accentuated on the large peaks in the case u3 = 1.0, a =

0.4, and p = 7.0 (bottom panel).

The uniform tilt mapping does not change the vertical distribution of h. The skewness is

therefore zero, and Chhh(xjxk) will be an odd function. The Hermite mapping on the other

hand only produces an even contribution to Chhh(xj,xk). We shall therefore be able to

study the vertical and lateral asymmetries separately simply by separating the third moment

into even and odd components.

Although the uniform tilt mapping produces very nice tilted synthetics, it has an

important flaw: it is not completely invertible. The problem is that there is a strong

probability, given a fractal surface, that there exists topographic points which are close

enough to each other and sufficiently separated vertically before mapping to have their

order reversed after mapping (i.e. they will produce an overhang). When the surface is

resampled in step 3 we must effectively discard one of the points. This problem is apparent

in the discrepancy between the calculated and numerically constructed g,(hi) functions

(Figure 6.6), which is most pronounced near h = 0. The region near h = 0 is,

unfortunately, where PH(h) is greatest. We can therefore expect a strong effect on the

calculation of Chhh(xjxk) when calculated using equation (6.6). Calculated and

numerically constructed axes of Chhh(xjxk) for 93 = 0.5 and a = 0.1 are shown in Figure

6.7. On the axes where xj * -xk, rather than decay monotonically to zero, the calculated

functions initially level off at non-zero values (either positive or negative depending on the
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sign of the lag). This problem is made especially clear when we plot the odd portion of

Chhh(xj~xk) (Figure 6.8, larger dashed lines).

We can better solve for one axis of Chhh(xjoxk) in the case of the uniform tilt mapping if

we restrict consideration to the skewness of the difference function D(xi, xj) = h(xi + xj) -

h(xi). The skewness of the difference is related to Chhh(xjxk) in the following way

E[D (xj )] = 6 E[h(xi) h(x +.)]0 (6.18)

where the superscript o indicates the odd part. Because the field is stationary, there is no

dependence on xi. As shown in Appendix A, if the topography is Gaussian distributed,

then the differences will also be Gaussian distributed with zero mean and variance given by

2(CM(0) - Ch(f)). The probability density function px/D) (the probability that, over a lag

xi, the difference = D) for D(xixj) of a field generated under the uniform tilt mapping can

be constructed in a manner similar to (6.11):

-2 G

px(D) dD = p G (DG) X dDG
x.-aD X.
j (6.19)

DG =D, dD =(D+ )G (D -- DG
2 2(- )

The weighting factor on the right-hand-side of (6.19) accounts for the fact that, where the

difference interval in the tilted profile xj is shorter than the difference interval for the

Gaussian profile xj - aDG, the total number of chances to find the difference D is greater

in the tilted profile than the Gaussian profile. At small values of xj this construction will

break down because of the overhang problem. As an artificial remedy, we allow pxj(D) to

be negative, where xj - atD < 0. This reflects the fact that such mappings are impossible,
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and compensates for the excessive probability which (6.19) gives to cases where xj - aD

is small and positive. The skewness of the differences is then determined by the integral

E[D3(x)]= I 3, P" (D-)dD' (6.20)
(2 6.0

The factor of 1/2 comes from the fact that px-(D) measures the total probability density of a

difference value D occurring over a lag distance xji, so that to consider either only positive

or negative lag we must divide by 2. Computed in this way, the function Chhh(xj,O)0 is

also plotted in Figure 6.8 (smaller dashed lines). The comparison to the numerically

constructed curve is very good. We are therefore encouraged that we can use Chhh(xj,O)0

for the estimation of lateral asymmetry.

The form of the function Chhh(xj,O)0 is very dependent on the form of the covariance

function as well as the value of a. The location of the peak on either side of zero lag

:xpeak is entirely dependent on the width of the covariance function or the characteristic

length 4 with the empirical relationship xpak - A4'4. The height of the peak, on the other

hand, is dependent both on the value of a and 4 The dependence on A., emphasizes the

point that in order to understand the third moment we must first understand the second.

INITIAL ATTEMPTS AT ESTIMATION OF HIGHER MOMENT PARAMETERS

Having solved the forward problem of determining the form of the third and fourth

moments of a profile given the mapping models and values of their parameters 43, P4, and

a, we now turn our attention to posing and solving the inverse problem of estimating these

parameters from the estimated third and fourth moments of bathymetric profiles. As in the

previous section, the skewness and kurtosis will be considered separately from the tilting

parameter. Unfortunately, various factors which will be described below make it difficult
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to estimate the asymmetry parameters, and we are forced to adopt procedures which, while

maximizing resolution of a particular estimate (i.e. its l-o'errors), sacrifice accuracy (i.e.

they are biased). It is therefore prudent at this time to restrict our goals to estimating the

sign of the asymmetries rather than their magnitude.

Vertical Asymmetry and Peakiness

To illustrate the difficulty in estimating the skewness, consider a set of N uncorrelated

samples hi of a process whose mean is 0 and whose variance, skewness and kurtosis are

given by P2 = 1, AL3 = 0.5 and p4 = 4.0 respectively. To estimate each moment we take

the following sums:

N
h (6.21)

iN1

The variance of each estimate is then given by

2 1EL, 1 = (E[] -E[/,] 2) (6.22)

p6 and p8 are calculated using the Hermite probability density:

1= f hnp,1(h,,p 3 ,124) dh (6.23)

For this example, 06 = 30 and P8 = 315. The variance of the estimate for A3 is

approximately an order of magnitude greater than for 22, and an order of magnitude less

than for p4. The 1-or errors on the estimates (the square root of the variance), as measured

proportionally to the expected value of the estimate, shows that P3 is the hardest parameter
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to estimate: the proportional errors for p3 are -6.3 times the proportional errors for p2, and

-2.5 times the proportional errors for p4. Since -a errors are inversely proportional to the

square root of N (see C.22), we see that we need 6.32 _= 40 times more data to resolve the

third moment than is needed to resolve the second at the same resolution.

Problems in estimating P3 are exacerbated in cases such as topography where the

samples are highly correlated. The correlation greatly reduces the total effective amount of

independent information which contributes to the estimation (see Chapter 3). In most

cases, the length of data required to directly estimate U3 from a single bathymetric profile

may be prohibitive, if not seriously jeopardize the non-stationary assumption. Correlation

is, however, a second-order property, which we estimate by other means and is only a

hindrance in the estimation of P3. We can greatly improve the resolution of both p3 and p4

by reducing h(x) to its uncorrelated component hP(x). This can be done by prewhitening,

the steps of which are the following: (1) Fourier transform a topographic profile, (2) divide

each value of the resulting complex spectrum by its absolute value, and (3) retransform

back into the space domain. The result is constrained to be an uncorrelated profile with

variance = 1. Equation (6.21) can then be used to estimate the values of pP3 and pP4

(where p indicates the prewhitened profile) from this profile with errors in the estimation

given by equation (6.22).

How do pP 3 andpP4 compare with P3 and p4? Through numerical experiments on

synthetic profiles, we find that pP 3 and pP4 tend to be biased toward Gaussian values of 0

and 3 respectively. pP3 is most strongly affected. It is typically about 1/2 the value of p

and, under certain conditions, can be less than 1/4 the value of P3. PP4, however, is not as

strongly biased, and usually is not more than 0.5 less than the value of P4. The amount

of bias is strongly dependent on several factors, including echosounder response width,

noise statistics, data spacing, correlation width and Hausdorff dimension. It beyond the

present scope of this work to determine the degree of contribution of each factor. We shall
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be content at present to estimate the value of P4 to within -0.5 plus the resolution error and

the general sense of asymmetry (i.e.whether p3 is positive or negative).

Despite the magnitude ambiguity in the estimation of these parameters, it is still a very

useful exercise to compare bathymetric profiles with synthetics generated from the

estimated covariance parameters and some educated guess as to the values of p3 and p.4.

Figure 6.9 shows such comparisons for both an Atlantic and Pacific Sea Beam profile.

There are clear differences between these two profiles in the second-order statistics; both

the rms height and characteristic length are substantially larger on the Atlantic profile (H =

292 ± 32 m, A0 = 7.6 ± 1.5 kin) than on the Pacific profile (H = 54 ± 2 m, A = 1.2 ±

0.22 kin). There are also visual differences which go beyond these quantities and which

the higher-order measures begin to address. The vertical skewness is negative on the

Pacific profile (U3 - -0.75), and positive on the Atlantic profile (.U3 - 1.0). The kurtosis,

meanwhile, is perhaps only slightly larger on the Atlantic profile (P4 - 6.0) than on the

Pacific profile (p4 - 5.5). In each case, the Hermite mapping synthetic provides a better

visual comparison than the Gaussian synthetic, indicating that we are somewhat successful

at characterizing some of the higher-order properties of the seafloor.

Lateral Asymmetry

The proposed means for estimating the tilt parameter a from bathymetric profiles is

through the skewness of differences function E[D 3(xj)I/6 = Chhh(xj,O) 0 (Figure 6.8). As

with estimating second-order statistics, it is important to understand the effect of

echosounder response on the model function. In Figure 6. 10 we have plotted Chhh(xj,O)o

for both the case of the ideal echosounder and for a realistic echosounder with response

width of 0.4 km. Both numerically constructed (equation (6.16)) and calculated (equation

(6.20)) functions are plotted. The principal effect of response is to reduce the size of the

peak and to laterally shift it outward by approximately 1/2 the response width.
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Also plotted if Figure 6. 10 are 1-aerrors on the null hypothesis that Ch(xj,0)0 is 0 for

all xj. The errors were generated by computing the standard deviation of the estimated

functions from 50 synthetic profiles used to construct Chhh(xj,0)o numerically. The error

curves provide important information regarding our ability to make estimates. We can

reasonably expect to resolve Chhh(xj,0)o from one profile only at lags where the expected

value surpasses the error curves. The errors increase dramatically from zero at zero lag to,

at large lag, being much larger than the function we are trying to estimate. There is,

fortunately, a significant region on either side near zero lag including the peaks where we

should expect to be able to resolve Chhh(xj,0)0 in this case. We are therefore hopeful that

we will be able to detect lateral asymmetry if it exists by the behavior of the estimated

skewness of differences near zero lag.

Before attempting a very difficult and time consuming formalized inverse problem, we

have formulated the following simplified inverse procedure for estimating a which depends

only on estimating the value of Chhh(XpeakO). After estimating the second-order

parameters (Chapter 2), Chh(xpak,0)0/ko is first estimated using equation (6.16). This

value is then converted to an estimate of a using a look-up table, calculated using (6.20),

that displays Chhh(X!,ak,0)°/ko as a function of k9 for several values of a (Figure 6.11).

The look-up table is sensitive to different values of the Hausdorff dimension and

echosounder response length, so that several must be produced. The error in the estimation

of a is assumed to be proportional to the error in C-hhh(Xpeak,O)0/k9, which is calculated

numerically. This assumption is generally supported by the nearly linear variation in a

with Chh(xPeak,)O/ke in Figure 6.11.

An example of an estimated skewness of differences function calculated from a synthetic

profile is shown in Figure 6.12. The synthetic profile was generated with a value of ko =

1.2, and a = 0.1. The large tick on the lag axis marks the position of Xpeak = A/4 +

response length/2. The estimated value of Chhh(Xpeak,O)0 is -0.045 ± .008. From the
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look-up table in Figure 6.11 (after dividing by k9 ), this translates to a value of a = 0.095 ±

.0 17, very close to the value of a = 0.1 used to generate the synthetic profile.

The applicability of this or any other estimation procedure to actual seafloor profiles

depends on whether or not the uniform tilt model is an accurate description of lateral

abyssal hill asymmetries. To explore this question we examine various Sea Beam profiles

and their Chj(xj,0)o functions. If inward facing slopes (slopes facing the ridge) tend to be

steeper than outward facing slopes, then Cehh(+xpeak,0o will be negative where a profile

runs toward the ridge, and positive where a profile runs away from the ridge. The

parameter a is defined such that it is positive if steeper slopes face the ridge, and negative

otherwise.

Our first example, shown in Figure 6.13, is from a Sea Beam profile taken near the East

Pacific Rise along the Cocos-Pacific spreading section. The second-order stochastic

parameters estimated from this section are H = 44 ± 3 m, and A6 = 2.3 ± 0.51 km (D was

assumed to be 2.5). We have also estimated the skewness and kurtosis at U3 - -0.6 and

p4 - 5.0. The estimated skewness of differences function (top panel) shows well defined

peaks near ±xpak which rise well above the 1-or errors plotted about the null hypothesis,

indicating that we are very likely detecting lateral asymmetry in this case. The estimated

value for the tilt parameter is a = 0.11 ± 0.04. The profile used for this estimation is also

shown is Figure 6.13 (top profile of bottom panel). It is not difficult to be convinced that

steeper slopes face the ridge in this data set. It is particularly noticeable in some of the

deeper basins (e.g. at 0730 h). There are also many features at smaller scales which appear

to be tilted. Below the data we compare two synthetic profiles, one which is generated

from the Hermite mapping of a profile generated from the second-order parameters and one

generated by also applying the uniform tilt mapping with a = 0.11. The comparison

between the data and the tilted synthetic is fairly good, and superior to the comparison with

the non-tilted synthetic. We conclude that for this case at least the uniform tilting model is

an acceptable means of quantifying lateral asymmetry.
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The uniform tilting model noticeably fails to characterize abyssal hill asymmetry when

the tilting does not occur uniformly at all scales. Figure 6.14 shows an example of this

from a Sea Beam profile taken in the same region as the previous example. For this

profile, the estimation of Chm(xj,O)0 (top panel) exhibits very large peaks on either side of

zero lag. However, the peaks are clearly not centered at the values of ±xeat derived from

the second-order characteristics. We are thus at a loss as to how to interpret such a curve in

terms of the uniform tilt model. Two large asymmetric basins (-1900 hrs) are the likely

cause of the mislocation of the peaks. These features are anomalously large compared with

the surrounding abyssal hill character, and will tend to dominate the estimation of the third

moment more than they will the second. The amount of tilting at the these scales is more

than can be accounted for by the simple model. The kurtosis in this case is also adversely

affected, with an absurdly high estimate of p4 = 12 ± 2. The large basins are an example

of non-stationarity, or episodicity which is not presently accounted for by our modeling.

Despite the ambiguity in interpreting the value of the tilt parameter in this case, estimation

of a (0.20 ± .03) still provides a strong measure of which direction the profile is tilted and

of how well resolved that measure is.

Three examples of the estimation of Chm(xj,0)o for different Pacific Sea Beam profiles,

shown in Figure 6.15, exhibit another form of non-uniform tilt. In each of these cases,

despite the existence of resolvable positive tilt at ±Xpeak, at small lags the estimated

functions either remain near zero or have the opposite sign out to larger values of Lxji than

can reasonably be accommodated by the uniform tilt model. This suggests that in these

cases the smaller scales exhibit no tilt or are actually tilted in the opposite direction from that

of the larger scale features. If polarized listric faulting [Rea, 1975] (Figure 5.5) is the

cause of measured tilting, then there are two reasonable physical mechanisms to produce

back tilting at smaller scales; either small scale features can be rotated by piggy-backing on

the larger-scale features, or antithetic faulting [Macdonald and Luyendyk, 1985] can occur

on the hanging wall (Figure 6.15).
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The unfortunate (yet challenging) conclusion from examining ChM(xpeak,0)o functions

estimated from various Sea Beam profiles is that the uniform tilt model is not flexible

enough to properly characterize the variation in lateral asymmetries that abyssal hills

exhibit. As with our conclusion regarding the abyssal hill aspect ratios in Chapter 4, future

modeling of the third moment should consider the dependence of parameterization on scale.

For this thesis, however, we will be content to address the problem of whether or not

abyssal hills are vertically and/or laterally asymmetric, and if so, then with what sign. For

this purpose, estimation of the parameters pP 3 and a by the procedures described above

will suffice.

RESULTS AND DISCUSSION

The results for the estimation of PP3 for the near-ridge data set (Table 5. 1, Figures 5.1-

5.3) are plotted as a function of spreading rate in Figure 6.17. The estimated values of uP3

near the slower-spreading ridge sections (below 7 cm/yr) are very consistently positive; i.e.

the abyssal hill peaks tend to be larger than the troughs. This suggests that, in the slower

spreading regions, abyssal hill morphology is predominantly formed by constructional

features; i.e. perhaps by periodic formation of volcanic edifices. This is consistent with the

working hypothesis proposed in the previous chapter and with the conclusions of Kong et

al. [1988] and Pockalny et al. (1989] on the basis of visual similarity of flanking abyssal

hills to volcanic ridges within the median valley. In their view, volcanic ridges pass out of

the rift valley essentially intact to become abyssal hills. We know, however, that as new

seafloor is rafted over the rift mountains it becomes very severely faulted, with throws up

to hundreds of meters [Macdonald and Luyendyk, 1977]. The evidence suggests that,

although volcanic ridges may not remain completely intact after passing out of the rift

valley, they still retain their essentially constructional character.
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Along the Pacific-Cocos spreading section, ,Jo3 is generally negative. 1.P3 also appears

to be negative on the portion of the Pacific-Nazca spreading just north of the Easter Island

Microplate (see also Figure 5.2). If we limit consideration to these and the data from

slower spreading ridges, we can construct the following plausible scenario, consistent with

the working hypothesis of the previous chapter, for abyssal hill formation. The slower-

spreading ridges are cold and strong, and can therefore support large constructional

features. The magma supply is likely episodic [Macdonald and Luyendyk, 1977; Kong et

al., 1988], thereby allowing individual volcanic ridges to form at the spreading axis which

are subsequently rafted (and faulted) away, likely leading to a positive value of 1P3. In this

case faulting is a secondary abyssal hill-forming process to volcanic construction. As the

spreading rate increases, the magma supply becomes more consistent, the axial magma

chamber becomes steady state and broader, and the near-ridge lithosphere becomes hotter

and weaker, making it very difficult to elastically support loads from large volcanic

constructs [Lonsdale, 1977] forming at the ridge axis. As the other end-member of this

scenario we would expect faulting and rifting caused by cooling to become the primary

abyssal hill forming process, leading, perhaps, t, a negative value of JpP 3. Unfortunately,

the very consistent estimated positive values for pP3 found south of the Easter Island

Microplate (Figure 6.17, see also Figure 5.2), some of the fastest spreading in the world,

do not fit into this model. As we pointed out in the previous chapter, this region seems

very anomalous, bearing more resemblance to slow-to-medium spreading rate regions than

to the Pacific-Cocos data. The data shown in Figure 6.17 lend further weight to this

observation.

The results for the estimation of pP4 for the near-ridge data set are shown in Figure

6.18. The results are all similar and not at all surprising given the strong non-zero

estimations of PP3 ; in nearly every case the estimation of PP4 is significantly greater than

the Gaussian value of 3. There does appear, however, to be a greater tendency toward

larger P4 at slower spreading rates. We interpret this to mean that the abyssal hill-forming
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processes are less uniformly distributed over scales and more episodic at slower spreading

rates than at faster spreading rates.

The results for the estimation of a for the near-ridge data set are shown in Figure 6.19.

The strongest evidence that steeper slopes face the ridge comes from the Pacific-Rivera and

Pacific-Cocos data. The Mid-Atlantic Ridge data indicates only marginal evidence for

positive tilt. For the Pacific-Cocos region, this evidence is consistent with submersible

observations, made by Macdonald and Luyendyk [1985], that inward-facing faults tend to

be larger than outward facing faults in this region. They also observed several split

volcanic ridges with fault surfaces facing inward.

Reviewing some of the previous chapter, the formation of polarized faulting along the

Rivera-Pacific rise is described by CYAMEX [1981]. They identify four zones of tectonic

activity: (1) volcanism, including flood basalts and edifice formation, (2) fissuring and

horst and graben formation, with no polarization in faulting direction, (3) polarized normal

faulting with larger inward facing faults, leading to the formation of a rift valley, and finally

(4) the inactive zone, where abyssal hill construction has ceased, and their morphology is

slowly modified by mass-wasting, sedimentation, and occasional off-axis volcanism.

These zones are also observed along the Mid-Atlantic Ridge. The principle morphological

differences between the slow and medium spreading are that the zone volcanism is almost

always expressed as edifice formation in the former as opposed to a mixture of edifice and

flood basalts in the latter, and the polarized faulting is much larger in the slower spreading,

creating rift valleys over 1 km deep and up to 30 km wide. The rift valley in the medium

spreading ridge, by contrast, has 50-200 m of relief [Macdonald, 19821, on the order of the

size of the flanking abyssal hills.

Given the observations of strong polarized faulting in the Atlantic, it may be surprising

that there is only marginal evidence there for lateral asymmetry (Figure 6.19). However, it

is clear that there must be an additional tectonic zone for slow spreading regions based on

geometric arguments [Harrison and Stieltjes, 1977, Macdonald and Atwater, 1978]. As the
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seafloor is rafted over the top of the rift mountains, it changes from sloping, on average,

upward to slightly downward. To accommodate this transition either one or more of the

following must occur: back tilting of the faulted blocks, reverse faulting on relict normal

faults, or the formation of outward facing normal faults. The net effect should be to

significantly reduce or even eliminate the lateral asymmetry. In the medium spreading

ridge, this stage need not occur as the rift mountains (actually hills) can be rafted away to

take their place among abyssal hills, and a new rift mountain is formed by one or two new

inward facing faults.

The strong evidence for lateral asymmetry along the Cocos-Pacific ridge system (Figure

6.19) is mildly problematic; fast spreading ridges are generally characterized by highs

associated with linear shield volcanoes [e.g. Lonsdale, 1977; Macdonald, 1982] rather than

by axial rift valleys; i.e. no zone 3 tectonic activity is observed. There is thus no obvious

means of producing the differential vertical motions necessary to produce polarized faulting

[Choukroune et al., 1984] and thus lateral asymmetry. We must therefore look for other

mechanisms to produce asymmetry. Observations by Rea [1975] of asymmetric abyssal

hills on the flanks of the East Pacific Rise near 110 S prompted him to propose that

polarized listric faulting with preferential inward facing faults, forming as a result of the

tensile stresses from surface cooling, is the dominant mechanism for producing abyssal

hills on fast spreading ridges. Significant evidence of outward facing fault-, near the East

Pacific Rise has lead others [e.g. Lonsdale, 1977; Choukrone et al., 1984] to favor a horst

and graben model. Bicknell et al. [1987] found, however, that while both outward and

inward facing faults tend to form on fast-spreading ridge flanks, inward facing faults tend

to have greater accumulated throw. They forward the suggestion, made earlier by

Tapponnier and Francheteau [1978] and Searle [19841, that inward facing faults rupture a

thinner brittle layer, and so require less energy to form. Some block tilting must occur,

however, to accommodate the difference in accumulated throw, and also to explain the
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possible observed back tilting (Figures 6.15 and 6.16), and so perhaps Rea's [1975] model

is at least partially correct.

CONCLUSIONS

In this chapter we have developed a general framework for the analysis of the moments

of a topographic field greater than 2. This framework uses "iterated" expectation to reduce

the statistical moment to component parts involving the vertical moment, lower moments,

and conditional expectation. The latter can be computed if we presume an invertible

morphological model which maps a topographic field with known statistic (i.e. a Gaussian)

to a field with desired properties. We illustrated the utility of this framework by calculating

the third moment for two mapping models; the Hermite polynomial probability density and

the uniform tilting.

These models contain parameters which provide very useful descriptions of the

morphological properties of vertical and lateral asymmetry and peakiness. We have

described initial methodologies for estimating these parameters from bathymetric profiles.

In the case of vertical asymmetry, A13, estimation is unfortunately hampered by the need for

large quantities of data. This can be circumvented to a degree by prewhitening, which

eliminates the correlated component of the profile. Estimates of the vertical asymmetry

from the prewhitened profile are, however, biased toward 0, and the amount of bias is

dependent on several factors. For now we can only reliably estimate the sign of vertical

asymmetry. Estimation of the peakiness parameter, .4, is also biased by prewhitening,

though not as severely. Estimation of the lateral asymmetry, a, is complicated by the fact

that the uniform tilt model is not general enough to characterize the observed skewness of

differences from bathymetric profiles. As with vertical asymmetry, we can at present only

reliably estimate the sign of lateral asymmetry.
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The results for vertical asymmetry generally indicate that slower spreading ridges tend to

produce abyssal hill morphology in which peaks are generally larger than the troughs. This

indicates that constructional features such as volcanic edifices probably play a dominant

role in abyssal hill formation. Faster spreading ridges, on the other hand, tend to have

abyssal hill with troughs bigger than peaks, indicating that destructional features such as

rifts or narrow grabens are dominant. The peakiness is everywhere larger than for a

Gaussian probability distribution, and tends to be larger for the slower spreading regions

than for the faster spreading regions. This may indicate that the abyssal hill forming

processes are more continuous in the Pacific.

Where lateral asymmetry is detected it almost always indicates that inward facing slopes

are steeper than outward facing slopes. At medium-rate spreading centers such as the

Rivera-Pacific section of the East Pacific Rise, the asymmetry is likely caused by

preferential inward faulting associated with rift valley formation. At slow spreading rates,

only marginal evidence for lateral asymmetry is observed despite observations that at slow

spreading axes there exists large amounts of preferential inward faulting. This asymmetry

can be nullified, however, at the crest of the rift mountains, where a change in slope must

be accommodated by either block tilting, reverse faulting on relict faults, or the formation

of outward facing normal faults. A strong component of lateral asymmetry is also

observed on fast spreading ridges such as the Cocos-Pacific section of the East Pacific

Rise, despite the fact that a rift valley is not formed there. Asymmetry in this case must be

accommodated by some degree of polarized listric faulting forming as a result of the tensile

stresses from surface cooling.



204

a=1 0, 0 < IU 3 < 1, 44 -0

pH(h~aMA3.A.) 0 5

-50 5

1 10. 413 =0, 3 < < 8

Pkh~1.aM34L4) -10

-505

h

a 1 1.0. 0 < A13 < 1. A4, = 5.0

pjj~~a-;3-A4 0.5

-50 -5

h

Figure 6. 1. Hermite polynomial function (6.14) plotted at various values Of A3 and M4.
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Figure 6.3. Calculated (dashed) and numerically constructed (solid) glag~h) functions
for a non-Gaussian value Of A3 (top panel) and y4 (bottom panel) at both a positive and
negative lag.
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Figure 6.4. Calculated (dashed) and numerically constructed (solid) Chhh(xj,.xk)
functions along three axes for a non-GaussianuA3 and p4.
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Figure 6.5. Various synthetic profiles generated using the uniform tilt mapping (top
panel) and both it and the Hermite mapping algorithm (bottom panel) (see text). The
Gaussian profiles from which each was mapped are also shown at the top of each panel (,U3
= 0.0, a - 0.0, and p4 = 3.0). The second-order parameters for all profiles shown are H
= 50 m, Ae =2.4 in, and D = 1.5.
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functions along three axes for a non-Gaussian a, P13, and p4.
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Figure 6.9. Comparison of Pacific (top panel) and Atlantic (bottom panel) Sea Beam
profile with synthetics generated from the estimated second-order parameters (bottom
profile of each panel) and estimated second-, third- (excluding a), and fourth-order
parameters (middle profile). The Pacific profile was taken from the Papatua 1 leg of the
RV Thomas Washington, near the East Pacific Rise at 13.10 N. The second-order
parameters estimated from this profile are H = 54 ± 2 m, and Aq = 1.2 ± 0.22 km. D was
assumed to be 2.5. The Atlantic profile was taken from the A14L2 cruise of the R V
Atlands HI, near the Mid-Atlantic Ridge, just south of the Kane Fracture Zone. The second-
order parameters estimated from this profile are H = 292 ± 32 m, and 4 = 7.6 ± 1.5 kin,
and D = 2.1 ± 0.9.
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Figure 6.14. Chhh(x wak,0)0 (solid, top panel) with numerically constructed errors on
the null hypothesis that C'hh(xpeak,O)0 = 0 (dashed, top panel), and the Pacific Sea Beam
profile from which it was calculated (bottom panel). The dama was taken on the Ceres 2 leg
of the RV Thomas Washington, near the East Pacific Rise at -14.00 N.
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Figure 6.15. Three examples of Chhh(Xpeak,O)0 (solid) from Pacific Sea Beam profiles
exhibiting possible back-tilt at smaller scalel (see text). Also shown are numerically
constructed errors on the null hypothesis that Chhh(Xpeak,O)° = 0 (dashed). Top panel is
from data taken aboard the RC2607 leg of the RV Robert Conrad, near the East Pacific
Rise at -9.40 N. The middle panel is from data taken aboard the same leg near the East
Pacific Rise at -11.0* N. The bottom panel is from data taken aboard the A112L26 leg of
the RV Atlantis !!, just south of the juncture between the Clipperton Transform Fault and
the East Pacific Rise.
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Figure 6.16. Possible causes of back tilting at small scales provided that polarized listric

faulting is the primary cause lateral asymmetry at larger scales.
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APPENDIX A

A COVARIANCE FUNCTION FOR SEAFLOOR TOPOGRAPHY

The seafloor covariance model given by (2.21) is specified in terms of the function

G (r) = rVK (r) 0<r< 00 V e [0,1] (2.20)

A correlation function of this form was first proposed by von Kdrmdn [1948] for

characterizing the random velocity field of a turbulent medium. It has since been frequently

used, with one value of v or another, in the turbulence literature [e.g., Tatarski, 1961] as

well as other studies involving random fields, such as wave scattering [e.g., Chernov,

1960]. Its importance has also been recognized in the statistical literature. For example,

Matdrn [ 1970] identified it specifically as belonging to the class of continuous correlation

functions. Workers such as Whittle [19541, Bartlett [1966], and Moran [1973] derived

(2.20) at several values of v as correlation functions uniquely corresponding to random

fields that are solutions to stochastic differential equations of the form

(1 + v)/2

+2 + h(x) = e(x) (A.I1)

where E(x) is a continuous, white noise process on the plane and K is a constant wave

number. The case v = 0 corresponds to a two-dimensional Markov field. The case v = 1

corresponds to an autoregressive field; the correlation function corresponding to this value

was called the elementary correlation in two dimensions by Whittle [1954]. Lord [ 1954],
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taking a slightly different tack, considered equations of the form of (2.20) as probability

distributions for random fields of arbitrary dimension.

The Power Spectrum

The power spectrum corresponding to a random field whose covariance function is

given by (2.21) is simply the Fourier transform of the covariance function:

-

Ph(k) = Chh(x) e- d 2x (2.7)

In the symmetric case, the power spectrum and covariance function can be related via an N-

dimensional Hankel transform [Lord, 1954]:

,u)=(y) u f r, N 2  - (rU) Chh (r) dr (A.2)PA(u) = (2z)N/2 U"AY2 + ! JN2-~C)i A2

0

Chhr)= (X)-N12 r--12 + IrfN2j
Chh(r) = (2x) r N UJN 1  (ru) Ph( u) du (A.3)

0

where JN12 - I is the Bessel function of order N12 - 1. The Hankel transform pair for Gv r)

has been derived by Lord [ 1954]:

p/(u )  I"(+ N/2) 0 + U2 )-v-N/2 (A.4)
21 - N-i ir N/2

Applying a change of variables specified by (2.13) to (2.7) for the anisotropic case and

normalizing G,(r) as in (2.21), we obtain, for the two-dimensional case,
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PA(k) = 4,rvH 2 IQIl[u2(k)+lf-V l) (2.22)

where u(k) and Q are defined in the text.

Calculation of the Hausdorff Dimension

The most typical method for calculating the fractal dimension of a random field is to

measure the asymptotic roll-off rate of the power spectrum [e.g., Fox and Hayes, 1985].

A space-domain method follows the definitions given by Adler [1981] which relate the

Hausdorff dimension D to the asymptotic properties of the covariance function near zero

lag. We define N and d to be the coordinate and field dimensions, respectively. We thus

consider h(x) to be a stationary Gaussian field with N = 2, d = 1, and a continuous

covariance function CM(r). We define the incremental variance function:

S2(r) a (Ih(4+x) - h()1 2) = 2 [Chh(0) - Chh(r)] (A.5)

Where o(r) exhibits a power-type behavior, we can define the index of the field h by

f3 = sup o(r) = o(rA, r 0}

= inf (13: rO = o(a(r)), r ,[ 0} (A.6)

(3may be said to be a measure of how erratic the local behavior of the field is. Adler

[198 11 shows that the Hausdorff dimension is then given by

D =min N , N+ d(1-,) (A.7)
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To examine the property of a(r) as r -+ 0, we make use of the Frobenious series expansion

[McLachlan, 1955]:

Kv~ )  IV l(r) - IV (r)] (A.8)

2 sin v~r

(r 2)

I(r)= (L) Y (A.9)
2 = 0n! F(n+ v+ 1)

where 1v is the modified Bessel function of the first kind. We now define

A =- (A. 10)
v 2sinwr G (0)

V

E (r) = )V(A. 11)
2 =0 n! F(n + v+ 1)

and note that 0 < EV(0), E.V(O) < oc. We may then write

C,, (r)= Av [E v (r) - r 2 v E v (r)]  (A.12)

As r -+ 0, 0(r)2 -+ 2AEv(0)r2v. Thus o(r) - r v as r -+ 0. From (A.6) it is then clear that

f8 = v and, in the case N = 2 and d = 1, D = 3 - v.

Self-Affine Scaling at Small Scales

An interesting surface property related to the Hausdorff dimension is self-affine scaling.

We adopt the following definition, based on definitions given by Mandelbrot [1983, 1985]
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and consistent with the notation established in this paper: A topographic surface h(x) is a

self-affine fractal surface if there exists an a e [0,11 such that, for all R > 0 the

topographic difference function d(x - xO) = h(x) - h(x 0 ) is identical in distribution to R-

ad(Rx - Rx0 ). Where a = 1, h(x) is a self-similar fractal surface. For surfaces

corresponding to power spectral forms such as (2.11), this relationship will hold for all

scales. However, for surfaces which have comer wave numbers in their power spectral

forms, this relationship holds only for small scales. To take this behavior into account we

can easily modify the self-affine definition in the following way: h(x) is a bounded self-

affine fractal surface if there exists a scale L such that the self-affine relationship holds for

Ix - x01 < L.

To solve for a in the case of a Gaussian distribution, we set the mean and variance of

d(x - x0 ) equal to the mean and variance of R-ad(Rx - Rx 0 ) (identical distribution).

Taking the mean of both gives

(d(x - x0)) = (R-a d(Rx -Rx 0 )) = 0 (A.13)

regardless of the value of R or a. We must therefore use the variances to constrain a:

((d(x - x0))2) = ((R-ad(Rx - Rxo)) 2  (A. 14)

The left-hand side of (A. 14) is simply the incremental variance function (A.5) so that, in

the isotropic case with k, = ks = ko, we have, for kox -xo v 1 (i.e. L = ko-1)

0- 2 = C x-X 2(A. 15)

C -- 2A (O)k0 = constant

Applying (A. 15) to (A. 14) gives
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cIx - xo12v = R-2,R2,c _ o12v  (A.16)

Thus a = v. In the anisotropic case it is clear that that we may set L = kn, and the same

relationship will hold with the constant in (A. 15) directionally dependent.

Asymptotic Equation

The behavior of the covariance at large lag is also affected by the parameter v, but to a

lesser extent than the behavior near the origin. Using the asymptotic expansion for Kv(r),

from McLachlan [ 1955], we compute, for r, 1,

v- 1/2 - (4 - 12)

+ (4v -1 )...[4v -(-3)1 + (A.17)
(n - 1)! (8r)" -I

Thus, the smaller the value of v, the greater the rate of decay at large r. This fact has

important implications for the estimation of scale parameters, since the rate of decay in the

covariance function with increasing lag is the primary determinant of the scale parameters.

A trade-off between these parameters is therefore to be expected. The behavior of the

covariance function at both small and large lag is illustrated in Figure 2.1.

Calculation of Characteristic Length

Consider a profile, taken in the e0 direction, of a random surface with covariance given

by (2.21). A simple and commonly used definition for the characteristic length along such

a profile [e.g., Tatarski, 1961; Bell, 1975b] is the inverse of the scale parameter, given by
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Ag a ki-* = ( 69TQi]-I2. Characteristic length can also be defined by the width of the

covariance function in the direction of the profile, which can be formulated in terms of the

variance about zero lag of the autocovariance function for the profile:

;-a = 2 (A.18)

where p, are the pt moments of the autocovariance function

I = 2 f x Chh(x ) dX (A.19)
0

and xo is length in the #,, direction. Making use of (2.21), we can rewrite (A. 19) as

2l : fv) J (k. xO) +K(koX) d(k x) (A.20)
lp G(Jo) ek+ 1

e 0

An equation of the form (A.20) is solved in the integral tables of McLachlan [1955],

yielding

2_______ 1 1
2 = 1 h" I /"{-(1)) F{I(2v+p+1)) (A.21)

'P G(JO) e 2 2

Returning to equation (A. 18), we have the result:

2J= v+Y2) (2.24)
k.
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This definition of the characteristic length is preferable to the previous one because it

explicitly accounts for the effect of the Hausdorff dimension as well as the scale parameter

on the width of the covariance function. In fact, it is likely that most of the D-ko trade-off

is well described by (A.22) with Agfixed. Thus, while resolution of D and k9 are

degraded by the trade-off, ke remains a well-resolved parameter.

Slope Statistics

Because the covariance function (2.21) is discontinuous at the origin for v < 1, the

random field has fractal character, and its spatial derivatives do not exist. Therefore, it is

necessary to measure slopes in terms of topography differences over finite intervals. The

slope function is defined as

s(x1, 1) = h(X1+T1) - h(X1) (A.25)l~I

where I j I is the slope interval. If the probability density function for h is stationary and

normally distributed with known second moment, as in (2.21), then the probability density

function for s will also be stationary and normally distributed with zero mean and variance

given by

(s = 2(Chh(O) - CM(41)) (A.26)f12

At small lag, (A.12) can be used to show that the slope variance is proportional to

I I 12(v-1). Thus, for fractal topography with v< 1, slopes become arbitrarily steep as the

slope interval decreases. In the case of the Euclidean surface (v = 1), the variance of slopes

is constant over all slope intervals.

Equation (A.26) can be generalized to the slope autocovariance function:
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C"(X,41,) = (s(x 1,41) s(x1 + x,4 1+ 4)) =

(A.27)

CM(x + 4) - C (tj - x) - Ch(x + 41+ 4) + Ch(x)

We can also calculate the slope-height covariance

Ch(41) - Chh() (A.28)

In one dimension, the case v = 0.5 (exponential covariance) yields a Markov process

(the Ornstein-Uhlenbeck process) [Feller, 1971]. The Markov property can be

demonstrated by considering the 1-D form of (A.27) for k9 a 1:

- 1 1 (A.29)

, 0 ,x

Thus, when slope intervals do not overlap (41 < x), the slopes are uncorrelated. Using the

asymptotic forms form v * 0.5, we find that the slopes for non-overlapping intervals are

positively correlated where v > 0.5, and negatively correlated where v < 0.5.
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APPENDIX B:

NESTED STOCHASTIC SEAFLOOR REALIZATIONS

This appendix details the algorithm developed to generate nested synthetic seafloor

sections from a second-order stochastic model such as (2.21). This algorithm can be

applied to any situation in which gridded, course-resolution data is used as a constraint for

data (stochastically generated or not) which is rendered at finer-scale resolution. An

important application of this algorithm is the stochastic interpolation of known (i.e.

deterministic) bathymetry based on a given stochastic model. The scale at which "known"

and "interpolated" topography are separated is arbitrary, so that a map may be constructed

at any scale before it is stochastically interpolated. Through the molding algorithm,

synthetic realizations can be combined with large-scale bathymetric maps, such as DBDB5,

to stochastically interpolate known ocean-bottom bathymetry.

Determi;stic and Stochastic Components of Seafloor Topography

We let z(x) be the height of the seafloor above some mean reference level at a position

x, and we suppose we have a map of this topography, denoted zM(x). Because the map is

based on limited data, it may accurately represent age-dependent subsidence, thermal

swells, major fracture zones, oceanic plateaus, and other "large-scale" features, but does

not contain topographic variations with horizontal dimensions below some "cutoff scale"

xM. We assume the map can be approximated as the output of some filter Mrz(x)]. To the

extent that th ni apping cutoff is sharp - i.e., M passes features larger than xM with no

distortion but completely annihilates features smaller than xM - this filter is a projection

operator: zM(x) = MIzM(x)]. An example of zM(x), the one used in this appendix, is the
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DBDB5 bathymetry, which is specified on a 5' x 5' grid (9.25-km knot spacing) and has

an effective cutoff of xM 50 km.

We seek to supplement this deterministic description of the seafloor with some

stochastic representation of the small-scale features. Let h(x) be a stochastic process, or

random field, which represents the statistics of the topographic variation at all length scales.

We define h,(x) = A'h(x)] and take as our model of seafloor topography

z(x) = zM(x) + h(x) - hm(x) (B.1)

In other words, we replace the stochastic components of the field with scale lengths greater

than the cutoff xM by the known ("deterministic") components. If M is a projection

operator, then applying it to this model recovers the map: "T (x)] = zM(x).

The Nesting Algorithm

The algorithm for generating nested synthetics involves two basic steps. The first is to

generate a master realization from the desired covariance function on a large-scale grid.

The second is to take a compact rectangular subset of the master realization and use it as a

constraint in generating a synthetic realization with finer resolution. The latter involves a

procedure for "molding" an arbitrary topographic array to values specified on a coarser

grid. The nested synthetic is then regarded as a master realization, and the nesting is

iterated to produce realizations on finer grids.

To generate unconstrained synthetic topography, we compute the Fourier spectrum on a

regularly spaced wave number grid by multiplying the square root of the power spectrum

(2.22) by a phase factor exp(io) where 0 is a random number uniformly distributed on the

interval f0, 2r) [Priestly, 1981]. The space domain image is then obtained from a two-

dimensional, fast Fourier transform. To minimize edge effects associated with aliasing, a

larger realization than required is generated, so that the edges may simply be discarded. An
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example of such a realization, displayed as a color-contoured, grey-shaded relief plot, is

shown in Figure B. 1.

The algorithm for generating a nested synthetic realization includes the following steps:

1. A rectangular (m x n array) compact subset of the master realization is selected for

nesting. As an example we use the square shown in the first panel of Figure B. 1. The

realization is a 1000 x 1000 array and the subset m = 100 x n = 100. (In practice, arrays

are 20% larger than stated throughout the algorithm, so that we may discard the edges to

reduce adverse aliasing effects.)

2. The subset is interpolated, using a bilinear (or bicubic) algorithm [Press et al.,

1986], at the resolution that will be required for the stochastic interpolation. This results in

an em x en array, where e is the enlargement factor. The second panel of Figure B. I

shows the bilinear interpolation of the box shown in the first panel with e = 10, which

results in another 1000 x 1000 array.

3. A stochastic realization is generated from the covariance model at the resolution

and scale required for the stochastic interpolation. The bilinear interpolation of the subset is

Fourier transformed, obtaining a spectrum with discrete wavenumbers (kxi,kyj) indexed -

em/2 < i < emt2 and -en/2 < j < en/2. Phases of the wavenumbers indexed -m/2 < i <

m/2 and -n/2 < j < n/2, the portion of the spectrum sampled by the master realization, are

then input as the phases for the identically indexed wavenumbers of the spectrum of the

stochastic realization. The Fourier transform of this spectrum produces a realization whose

low wavenumber characteristics are similar to those of the interpolated subset (compare the

second and third panels of Figure B. 1).

4. The final step is the molding the finer-scale realization generated in step 3 to the

master realization generated in step 1. The former is first sampled on the coarse grid,

resulting in an m x n array. This array is then interpolated using the same algorithm used

in step 2, yielding another em x en array. The difference between this interpolated array

and that obtained in step 2 is subtracted from the finer-scale realization, thus constraining it
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to coincide with the master on the coarser grid. The fourth panel in Figure B. 1 shows the

final product.

The effect of the molding algorithm is to replace the smoother features of the

unconstrained stochastic realization with those obtained from the master without

significantly altering the power spectrum.

Stochastic Interpolation of Gridded Bathymetric Data

The molding algorithm can be used to stochastically interpolate a gridded bathymetric

map, such as DBDB5, by using the map as the master realization. The following model

parameters were used to generate two stochastic realizations to interpolate DBDB5 data:

Model H Cs An ;,s D
(i) (deg) nkm) (kin)

SM1-P 50 170 2.3 19 2.5

SM1-A 225 10 5.9 22 2.2

Model SMI-P was obtained from Sea Beam data taken near the East Pacific Rise between

the Orozco and Siquieros fracture zones (see chapter 4), and model SM 1-A from Sea Beam

data taken just south of the Kane fracture zone.

Two sets of DBDB5 bathymetry, gridded at M0 km .- ing and covering 100 km on a

side, are shown in Figure B.2. These data sets have been linearly interpolated to 100 m

spacing, the resolution at which we will stochastically interpolate. The molding algorithm

superimposes a stochastic realization generated from the model parameters onto the

interpolated DBDB5 bathymetry. The results are also shown in Figure B.2.
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Aliasing

If the spectrum of a spatially unlimited topographic field h(x) is sampled on an N x N

grid of spacing Ak, its space-domain image will be an aliased version of h(x). The

covariance function of the aliased field will be the sum of the covariance function CM(x)

with copies centered on a grid with spacing NAx [Bracewell, 1978]. When N Ax is large

compared to the characteristic length A., such as in the case of the master realization of each

series, aliasing will not be significant, since the amplitude of the copies is small where

CM(x) is large. However, when NAx is small compared to the characteristic length, such

as in the second-level and third-level nestings of each series, the spacing between copies is

small enough that the aliased covariance function will be significantly different from the

model.

Fortunately, the effect of aliasing is to add power to the field only at the largest scales.

The combined contribution of nearby diametrically placed copies will be approximately a

constant. Adding a constant to the covariance simply adds a constant to the topography,

which is removed in the molding procedure.
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Figure B.2. Color-contoured, grey-shaded plots of the Pacific and Atlantic DBDB5
sections provided in the release and the superposition of these data sets with the (molded)
stochastic realizations (see text). These topographic models are designated SMI-P and
SM I-A, respectively Latitude and longitudes represent the location of the lower-left comer
of each DBDB5 section.
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APPENDIX C

STATISTICAL ANALYSIS OF SEAMARC II NOISE

This appendix is a statistical analysis of the noise characteristics for the SM-Il

bathymetric data taken aboard the MW8707 cruise. The purpose of this analysis is to

investigate the suitability of this data set as it is made available in the standard HJG .zx

format (A. Shor, personal communication, 1990) for use in stochastic characterization of

abyssal hill morphology at small scales (< 10 kin). li does not affect the well-known

usefulness of the SM-II system for quickly gathering large quantities of bathymetric data,

suitable for characterizing larger scale features, as well as simultaneous backscatter data.

This appendix is concerned only with characterizing the effects of SM-il noise so that we

can, in turn, understand how it affects the statistics of the seafloor bahymetry which it is

measuring. A detailed examination of the causes of SM-Il noise characteristics is beyond

the scope of this paper. For a recent description of SM-II noise we refer the reader to

Matsumoto [1990]. This analysis is based on methods developed in Chapter 2 for Sea

Beam data.

To facilitate the study, SM-I .zx files are formed into 16 "beams" to simulate an

idealized Sea Beam data geometry; for each SM-Il ping, the data point chosen to represent

each beam corresponds to the point closest to a preset cross-track distance. Other than the

center beam, the cross-track distances used to form the beams begin at 0.75 km on either

side of the center line and index every 0.45 km thereafter. This algorithm results in a 7.8

km wide swath width. Results for two SM-I data sets are shown in Figures C. I and C.2.

Figure C. 1 is 5-ping averaged data from the MW8707 cruise, taken just west of the EPR

near 130 N. (The 5-ping averaging is necessary to reduce the level of noise sufficiently to

view the data. In the actual analysis only unaveraged data is used.) Figure C.2 is 5-ping
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averaged data from the same cruise, crossing the Siquieros Fracture Zone west of the ridge-

transform intersection. In each figure, the 16 formed beams are plotted individually. Port

(negative) beams are at top. (Plotting the data as time series rather than as contours allows

the reader a better intuitive understanding of the noise characteristics.) Noise is evident on

each plot as high-frequency variability superimposed on the topography. The port side is

much noisier than the starboard due to a significant difference in transmit power between

the two sides prior to October, 1987 (A. Shor, personal communication, 1990). Figure

C. I is an example of fairly typical abyssal hill topography for the EPR region. The abyssal

hills appear as coherent lineated features which slant diagonally. These are difficult to see

on the port side because the noise, which is less coherent from beam to beam, is greater in

amplitude than the abyssal hills themselves. On Figure C.2 there is no problem picking out

the major topographic features (the fracture zone). However, there are also at least two

regions where several beams simultaneously become extremely negative. These are likely

due to time errors (A. Shor, personal communication, 1990).

We represent the time series for the pth beam by an equation of the form (2.25). This

linear approximation works well for Sea Beam which calculates depth based on the centroid

of the arrival time of acoustic energy reflecting from a finite area of seafloor. Sea Beam

thus averages the seafloor in some fashion (though not exactly linearly) over a region AP(t).

Noise is likely an expression of uncertainty in picking the correct centroid time. It is more

difficult to predict the form of SM-I1 response and noise. In the following discussion,

equation (2.25) provides only a framework for comparison and its validity with respect to

SM-1I bathymetry is not critical. In more general terms, we consider system effects which

filter high wavenumber behavior of the seafloor to be the response, and those which enrich

high wavenumber behavior to be the noise.

Topography is expected to have a covariance function given by (2.21). We also expect

the cross-correlation of noise from beam to beam to be small so that the second order noise

properties can be described by (2.30). Equation (2.31) represents the forward problem in
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relating the second-order statistics of the seafloor to the statistics of a multibeam data set.

The echosounder response, acting like a filter, will tend to smooth the cross-covariance

function and noise will add a sharp spike (assuming its correlation distance is small) to the

top of the autocovariance (p = q) function. These effects are illustrated in Figure 2.6 both

for the autocovariance function and its Fourier transform, the power spectrum, assuming a

white noise (pn,(t) = 6(t)). The dashed line represents the autocovariance for an

unmodified seafloor. These effects can be seen on the autocovariance of the SM-Il center

beam (beam 0) and power spectrum (Figure C.3). The SM-il center line, unlike the side-

scan bathymetry, is a simple first-arrival echosounder and thus is similar to a Sea Beam

system. The "spike" at the top of the autocovariance in Figure C.3 (see inset figure) is very

sharp; its correlation width appears to be less than the data spacing (-0.037 kin).

Correspondingly, the part of the power spectrum dominated by noise effects (high

wavenumbers) is flat. The noise in this case can thus be treated as a white process. The

variance of the noise can easily be measured by the height of the spike, or the difference

between the 0th and 1st lag.

Figure C.4 shows the autocovariance and power spectrum for the 6th port-side beam

(beam -6) from the center beam of the SM-Il data shown in Figure C.2. The

autocovariance in this case is dominated by the two large features of the fracture zone. The

effects of noise, which is also large on the port beams, is clearly in evidence as a spiky

"cap" on top of the autocovariance. Unlike the center line (or Sea Beam), however, the

along-track correlation distance (defined by the width of the correlation function) for p,,(t),

-I km, is considerably larger than the data spacing. Correspondingly, the noise portion of

the power spectrum is sloping rather than flat. The effects of SM-II noise are even more

dramatic in Figure C.5, which shows the autocovariance and power spectrum of the -6

beam from Figure C. 1. In this case noise dominates both the data and the autocovariance

function. The noise correlation distance is again -1 km. The slope of the power spectrum

in Figure C.5 is very gradual, indicating a high fractal dimension for the noise process of
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-1.8. Figure C.6 shows the autocovariance and power spectrum of the +3 beam in Figure

1. In this case, although the topographic covariance is a much larger portion of the total

beam autocovariance, the portion which is due to noise is still large. Because the noise

correlation is similar in size and shape to the topographic contribution to the beam

autocovariance, it is impossible, without further information, to separate the two effects.

However, because we can reasonably quantify the effects of the center echosounder profile

(see Figure C.3), we can use its autocovariance as an approximate constraint. In Figure

C.6, the dashed line represents the fit-by-eye model autocovariance shown in Figure C.3

(without system effects). The difference between the sample autocovariance and this

model, enlarged and plotted in the inset, represents the approximate combined effects of

SM-I noise and response in this profile. Again it is clear on this plot that the noise

correlation has a width of-i kIn. Perhaps because of the significant correlation distance of

the noise, the effects of response (if it exists), which should show as negative regions on

the inset of Figure C.6, cannot easily be detected as in Figure C.3.

It is possible to make a rough estimate of the SM-I noise variance by differencing the

autocovariance at 0 lag with the autocovariance at a lag sufficiently far to capture most of

the noise variance but little of the topographic variance. We are aided in this by the

assumed presence of an echosounder response, which should flatten the top of the

topographic autocovariance in the absence of additive noise. For the SM-II examples in

this study, we feel that differencing at a lag of 0.25 km provides a close (perhaps slightly

underestimated) measure of the noise variance. Figures C.7 and C.8 show the rms noise

estimated in this manner for each beam of the data in Figures C. 1 and C.2 respectively.

The noise-beam pattern is nearly identical for each case: the port (negative) beams exhibit

the greatest amount of noise, and the center beam (calculated by differencing the 0th and 1st

lag of the autocovariance) exhibits much less noise than does the side-scan bathymetry.

The overall noise variation is greater for the data which has the strongest topographic
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component (Figure C.8). It is difficult to tell whether this results from a correlation of

topography and noise or from leakage of topographic variance into the noise estimate.

There are several questions raised by this analysis that need to be addressed. Primarily

we need to better understand the mechanism of response and noise for both multi-beam and

side-scan bathymetric systems. Once done we may then come to an understanding of why

SM-il noise is strongly correlated and Sea Beam noise is not, and of what the significance

is of the correlation width and fractal dimension of SM-II noise. Work in this area is

presently being carried out by Tom Reed at RIG (personal communication, 1989), who has

noted the correlated noise as an artifact shingled textured to SM-Il bathymetry data and

attributed it to dispersed arrivals from strong reflectors. He has developed an algorithm to

recognize and remove these effects. It is hoped that both through the improved power

amplification hardware which has recently been installed, new transducers which have yet

to be installed, and improved processing techniques that SM-H bathymetry data can be

rendered suitable for the quantitative analysis of small-scale features.
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Figure C. 1. 5-ping averaged SM-II data from the MW8707 cruise, taken just west of
the EPR crest near 130 N. The SM-II z-x data are formed into 16 beams to simulate Sea
Beam geometry (see text). The 16 formed beams are plotted individually. Port (negative)
beams are at top. Ship direction is left-to-right.
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Figure C.2. Sam as Figure C. I for SM-11 data from the MW8707 cruise crossing the
Siquieros Fracture Zone just west of the ridge-transform intersection.
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Figure C.3. Autocovariance (top), with inset showing enlargement of the origin, and
power spectrum (bottom) calculated from the center beam (+0) of the data in Figure C.l1.
Also shown. in dashed lines, ar fit-by-eye model functions both with and without system
effects (compare with Figure 2.6).
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beam of the data shown in Figure C.2.
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